GGUF
Inference Endpoints
File size: 5,393 Bytes
150f432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

---

license: apache-2.0
language:
  - en
  - fr
  - de
  - es
  - it
  - pt
  - ru
  - zh
  - ja

---

![](https://cdn.discordapp.com/attachments/791342238541152306/1264099835221381251/image.png?ex=669ca436&is=669b52b6&hm=129f56187c31e1ed22cbd1bcdbc677a2baeea5090761d2f1a458c8b1ec7cca4b&)

# QuantFactory/Mistral-Nemo-Base-2407-GGUF-iamlemec
This is quantized version of [mistralai/Mistral-Nemo-Base-2407](https://huggingface.co./mistralai/Mistral-Nemo-Base-2407) created using llama.cpp

# Original Model Card


# Model Card for Mistral-Nemo-Base-2407

The Mistral-Nemo-Base-2407 Large Language Model (LLM) is a pretrained generative text model of 12B parameters trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.

For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).

## Key features
- Released under the **Apache 2 License**
- Pre-trained and instructed versions
- Trained with a **128k context window**
- Trained on a large proportion of **multilingual and code data**
- Drop-in replacement of Mistral 7B

## Model Architecture
Mistral Nemo is a transformer model, with the following architecture choices:
- **Layers:** 40
- **Dim:** 5,120
- **Head dim:** 128
- **Hidden dim:** 14,436
- **Activation Function:** SwiGLU
- **Number of heads:** 32
- **Number of kv-heads:** 8 (GQA)
- **Vocabulary size:** 2**17 ~= 128k
- **Rotary embeddings (theta = 1M)**

## Metrics

### Main Benchmarks

| Benchmark | Score |
| --- | --- |
| HellaSwag (0-shot) | 83.5% |
| Winogrande (0-shot) | 76.8% |
| OpenBookQA (0-shot) | 60.6% |
| CommonSenseQA (0-shot) | 70.4% |
| TruthfulQA (0-shot) | 50.3% |
| MMLU (5-shot) | 68.0% |
| TriviaQA (5-shot) | 73.8% |
| NaturalQuestions (5-shot) | 31.2% |

### Multilingual Benchmarks (MMLU)

| Language | Score |
| --- | --- |
| French | 62.3% |
| German | 62.7% |
| Spanish | 64.6% |
| Italian | 61.3% |
| Portuguese | 63.3% |
| Russian | 59.2% |
| Chinese | 59.0% |
| Japanese | 59.0% |


## Usage

The model can be used with three different frameworks

- [`mistral_inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference)
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
- [`NeMo`](https://github.com/NVIDIA/NeMo): See [nvidia/Mistral-NeMo-12B-Base](https://huggingface.co./nvidia/Mistral-NeMo-12B-Base)


### Mistral Inference


#### Install

It is recommended to use `mistralai/Mistral-Nemo-Base-2407` with [mistral-inference](https://github.com/mistralai/mistral-inference). 
For HF transformers code snippets, please keep scrolling.

```
pip install mistral_inference
```

#### Download

```py
from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Mistral-Nemo-Base-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
```

#### Demo

After installing `mistral_inference`, a `mistral-demo` CLI command should be available in your environment.

```
mistral-demo $HOME/mistral_models/Nemo-v0.1
```

### Transformers

> [!IMPORTANT]
> NOTE: Until a new release has been made, you need to install transformers from source:
> ```sh
> pip install git+https://github.com/huggingface/transformers.git
> ```

If you want to use Hugging Face `transformers` to generate text, you can do something like this.

```py
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mistral-Nemo-Base-2407"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("Hello my name is", return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

> [!TIP]
> Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.

## Note

`Mistral-Nemo-Base-2407` is a pretrained base model and therefore does not have any moderation mechanisms.

## The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall