--- base_model: - meta-llama/Meta-Llama-3.1-8B-Instruct - elyza/Llama-3-ELYZA-JP-8B - nvidia/Llama3-ChatQA-1.5-8B library_name: transformers tags: - mergekit - merge language: - ja license: llama3 --- ![](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ) # QuantFactory/Llama3.1-ArrowSE-v0.4-GGUF This is quantized version of [DataPilot/Llama3.1-ArrowSE-v0.4](https://huggingface.co./DataPilot/Llama3.1-ArrowSE-v0.4) created using llama.cpp # Original Model Card ## 概要  このモデルはllama3.1-8B-instructをもとに日本語性能を高めることを目的にMergekit&ファインチューニングを用いて作成されました。 meta,ELYZA,nvidiaの皆様に感謝します。 ## how to use ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。" text = "Vtuberとして成功するために大切な5つのことを小学生にでもわかるように教えてください。" model_name = "DataPilot/Llama3.1-ArrowSE-v0.4" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", ) model.eval() messages = [ {"role": "system", "content": DEFAULT_SYSTEM_PROMPT}, {"role": "user", "content": text}, ] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) token_ids = tokenizer.encode( prompt, add_special_tokens=False, return_tensors="pt" ) with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=1200, do_sample=True, temperature=0.6, top_p=0.9, ) output = tokenizer.decode( output_ids.tolist()[0][token_ids.size(1):], skip_special_tokens=True ) print(output) ``` ## merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using meta-llama/Meta-Llama-3.1-8B-Instruct as a base. ### Models Merged The following models were included in the merge: * [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) * [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co./elyza/Llama-3-ELYZA-JP-8B) * [nvidia/Llama3-ChatQA-1.5-8B](https://huggingface.co./nvidia/Llama3-ChatQA-1.5-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: meta-llama/Meta-Llama-3.1-8B-Instruct parameters: weight: 1 - model: elyza/Llama-3-ELYZA-JP-8B parameters: weight: 0.7 - model: nvidia/Llama3-ChatQA-1.5-8B parameters: weight: 0.15 merge_method: ties base_model: meta-llama/Meta-Llama-3.1-8B-Instruct parameters: normalize: false dtype: bfloat16 ```