aashish1904
commited on
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
|
2 |
---
|
3 |
|
|
|
|
|
4 |
base_model: meta-llama/Llama-3.2-3B-Instruct
|
5 |
-
library_name: sft
|
6 |
datasets:
|
7 |
- lianghsun/tw-emergency-medicine-bench
|
8 |
- lianghsun/tw-legal-nlp
|
9 |
-
- lianghsun/tw-structured-law-article
|
10 |
- lianghsun/tw-legal-synthetic-qa
|
11 |
- lianghsun/tw-law-article-qa
|
12 |
- lianghsun/tw-judgment-qa
|
@@ -16,7 +16,13 @@ tags:
|
|
16 |
- TW
|
17 |
- Taiwan
|
18 |
- ROC
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
language:
|
21 |
- zh
|
22 |
pipeline_tag: text-generation
|
@@ -32,13 +38,24 @@ This is quantized version of [lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct](http
|
|
32 |
# Original Model Card
|
33 |
|
34 |
|
35 |
-
|
36 |
-
|
37 |
|
|
|
38 |
|
39 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/W6-UDg0_cNm4WJVlR9tiD.png)
|
|
|
40 |
基於 [meta-llama/Llama-3.2-3B-Instruct](meta-llama/Llama-3.2-3B-Instruct) 模型,透過中華民國台灣法律條文及判決書等相關資料集進行微調。
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
## Model Details
|
43 |
|
44 |
### Model Description
|
@@ -63,16 +80,19 @@ This is quantized version of [lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct](http
|
|
63 |
### Direct Use
|
64 |
|
65 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
|
|
66 |
此模型可以直接用於理解和生成繁體中文法律文本,適合需要處理台灣法律相關問題的應用場景。模型預設的指令和回應能夠有效提供法律資訊、釐清法律條文、並生成符合法律專業的回應。其直接使用範圍包括但不限於法律資訊查詢、法律文本摘要、和基本的法條對話。
|
67 |
|
68 |
### Downstream Use
|
69 |
|
70 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
|
|
71 |
經過微調後,該模型可用於更具體的法律任務,如自動判決書分析、法律實體識別(NER)、法規編號轉換,以及法律合規審查輔助。此模型可以無縫集成至法律數據科學應用或法律技術(LegalTech)系統中,幫助法律專業人士或企業提升工作效率。
|
72 |
|
73 |
### Out-of-Scope Use
|
74 |
|
75 |
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
|
|
76 |
該模型並不適用於非法律相關領域的生成任務,且不應用於進行可能涉及誤導或錯誤的法律建議,尤其是在未經專業審查的情況下。避免將模型用於未經授權或非法用途,如生成具爭議性或具偏見的法律建議。
|
77 |
|
78 |
## Bias, Risks, and Limitations
|
@@ -101,6 +121,8 @@ This is quantized version of [lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct](http
|
|
101 |
|
102 |
## How to Get Started with the Model
|
103 |
|
|
|
|
|
104 |
### Using vLLM
|
105 |
|
106 |
要使用 [vLLM Docker image](https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html) 來啟動此模型,您可以按照以下操作:
|
@@ -113,60 +135,54 @@ docker run --runtime nvidia --gpus all \
|
|
113 |
vllm/vllm-openai:latest \
|
114 |
--model lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
|
115 |
```
|
116 |
-
|
117 |
## Training Details
|
118 |
|
119 |
-
### Training Data
|
120 |
|
121 |
- [lianghsun/tw-legal-nlp](https://huggingface.co/datasets/lianghsun/tw-legal-nlp)
|
122 |
-
- [lianghsun/tw-structured-law-article](https://huggingface.co/datasets/lianghsun/tw-structured-law-article)
|
123 |
- [lianghsun/tw-legal-synthetic-qa](https://huggingface.co/datasets/lianghsun/tw-legal-synthetic-qa)
|
124 |
- [lianghsun/tw-law-article-qa](https://huggingface.co/datasets/lianghsun/tw-law-article-qa)
|
125 |
- [lianghsun/tw-judgment-qa](https://huggingface.co/datasets/lianghsun/tw-judgment-qa)
|
126 |
- [lianghsun/tw-bar-examination-2020-chat](https://huggingface.co/datasets/lianghsun/tw-bar-examination-2020-chat)
|
127 |
- [lianghsun/tw-emergency-medicine-bench](https://huggingface.co/datasets/lianghsun/tw-emergency-medicine-bench)
|
128 |
|
129 |
-
|
130 |
-
### Training Procedure
|
131 |
-
|
132 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
133 |
|
134 |
#### Preprocessing
|
135 |
|
136 |
無。基本上我們並沒有針對 [meta-llama/Llama-3.2-3B-Instruct](meta-llama/Llama-3.2-3B-Instruct) 做任何的預訓練或更改其模型架構;Tokenizer 也是採用原生所提供的。
|
137 |
|
138 |
-
#### Training
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
- **
|
143 |
-
- **
|
144 |
-
- **
|
145 |
-
- **
|
146 |
-
- **
|
147 |
-
- **
|
148 |
-
- **
|
149 |
-
- **
|
150 |
-
- **
|
151 |
-
- **
|
152 |
-
- **
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
- **Duration**:
|
160 |
-
- **Train runtime**:
|
161 |
-
- **Train samples per second**:
|
162 |
-
- **Train steps per second**:
|
163 |
-
- **Total training FLOPs**:
|
164 |
-
- **Train loss**:
|
165 |
|
166 |
## Evaluation
|
167 |
|
168 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
169 |
-
**Note**: ..(WIP)..
|
170 |
|
171 |
### Testing Data, Factors & Metrics
|
172 |
|
@@ -198,6 +214,8 @@ docker run --runtime nvidia --gpus all \
|
|
198 |
|
199 |
## Model Examination
|
200 |
|
|
|
|
|
201 |
### 法條回覆
|
202 |
|
203 |
**Note**: ..(WIP)..
|
@@ -210,14 +228,13 @@ docker run --runtime nvidia --gpus all \
|
|
210 |
|
211 |
**Note**: ..(WIP)..
|
212 |
|
|
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
- **
|
217 |
-
- **
|
218 |
-
- **
|
219 |
-
- **Compute Region:** us-central1-c
|
220 |
-
- **Carbon Emitted:** `0.86 kgCO$_2$eq`
|
221 |
|
222 |
## Technical Specifications
|
223 |
|
@@ -227,9 +244,9 @@ docker run --runtime nvidia --gpus all \
|
|
227 |
|
228 |
### Compute Infrastructure
|
229 |
|
230 |
-
#### Hardware
|
231 |
|
232 |
-
-
|
233 |
|
234 |
#### Software
|
235 |
|
@@ -241,6 +258,7 @@ docker run --runtime nvidia --gpus all \
|
|
241 |
|
242 |
## Glossary
|
243 |
|
|
|
244 |
無。
|
245 |
|
246 |
## More Information
|
@@ -248,8 +266,6 @@ docker run --runtime nvidia --gpus all \
|
|
248 |
### 算力
|
249 |
儘管我們已準備了許多關於中華民國台灣法律領域的資料集,但由於算力資源有限,**無法將所有資料集進行完整訓練**(是的,我們並沒有將全部資料集都進行訓練,僅取出被認為最基礎的法律文本),導致模型尚未達到最佳表現。因此,目前的 checkpoint 是基於有限資源的版本。如果您有意願贊助算力,歡迎與我聯繫。我相信,若能將更多已準備但尚未納入訓練的法律語料進行微調,該模型將能達到繁體中文法律領域的最佳表現。
|
250 |
|
251 |
-
**另外**,和 [lianghsun/Llama-3.2-Taiwan-Legal-1B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-Legal-1B-Instruct) 相較之下,又因為算力成本考量, [lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct) 未訓練到 1 epoch,所以在表現上又更加不如預期。
|
252 |
-
|
253 |
### 持績更新
|
254 |
此模型如有進一步資源,將會不定期更新。
|
255 |
|
@@ -263,4 +279,7 @@ docker run --runtime nvidia --gpus all \
|
|
263 |
|
264 |
### Framework versions
|
265 |
|
266 |
-
-
|
|
|
|
|
|
|
|
1 |
|
2 |
---
|
3 |
|
4 |
+
library_name: transformers
|
5 |
+
license: llama3.2
|
6 |
base_model: meta-llama/Llama-3.2-3B-Instruct
|
|
|
7 |
datasets:
|
8 |
- lianghsun/tw-emergency-medicine-bench
|
9 |
- lianghsun/tw-legal-nlp
|
|
|
10 |
- lianghsun/tw-legal-synthetic-qa
|
11 |
- lianghsun/tw-law-article-qa
|
12 |
- lianghsun/tw-judgment-qa
|
|
|
16 |
- TW
|
17 |
- Taiwan
|
18 |
- ROC
|
19 |
+
- llama-factory
|
20 |
+
- full
|
21 |
+
- generated_from_trainer
|
22 |
+
model-index:
|
23 |
+
- name: train_2024-10-17
|
24 |
+
results: []
|
25 |
+
new_version: lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
|
26 |
language:
|
27 |
- zh
|
28 |
pipeline_tag: text-generation
|
|
|
38 |
# Original Model Card
|
39 |
|
40 |
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
|
44 |
+
# Model Card for Model lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
|
45 |
|
46 |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/W6-UDg0_cNm4WJVlR9tiD.png)
|
47 |
+
|
48 |
基於 [meta-llama/Llama-3.2-3B-Instruct](meta-llama/Llama-3.2-3B-Instruct) 模型,透過中華民國台灣法律條文及判決書等相關資料集進行微調。
|
49 |
|
50 |
+
## Model Update History
|
51 |
+
|
52 |
+
| Update Date | Model Version | Key Changes |
|
53 |
+
|--------------|-----------------------|-------------------------------------|
|
54 |
+
| 2024-10-17 | v1.1.0 | Experimental fine-tuning on v1.0.0 with added legal code data from the Republic of China (Taiwan) |
|
55 |
+
| 2024-10-10 | v1.0.0 | Full model training completed, but missing legal code data for the Republic of China (Taiwan) |
|
56 |
+
| 2024-09-27 | v0.1.0 | Model v0.1.0 released, but training was interrupted after 3 epochs due to lack of compute resources |
|
57 |
+
|
58 |
+
|
59 |
## Model Details
|
60 |
|
61 |
### Model Description
|
|
|
80 |
### Direct Use
|
81 |
|
82 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
83 |
+
|
84 |
此模型可以直接用於理解和生成繁體中文法律文本,適合需要處理台灣法律相關問題的應用場景。模型預設的指令和回應能夠有效提供法律資訊、釐清法律條文、並生成符合法律專業的回應。其直接使用範圍包括但不限於法律資訊查詢、法律文本摘要、和基本的法條對話。
|
85 |
|
86 |
### Downstream Use
|
87 |
|
88 |
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
89 |
+
|
90 |
經過微調後,該模型可用於更具體的法律任務,如自動判決書分析、法律實體識別(NER)、法規編號轉換,以及法律合規審查輔助。此模型可以無縫集成至法律數據科學應用或法律技術(LegalTech)系統中,幫助法律專業人士或企業提升工作效率。
|
91 |
|
92 |
### Out-of-Scope Use
|
93 |
|
94 |
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
95 |
+
|
96 |
該模型並不適用於非法律相關領域的生成任務,且不應用於進行可能涉及誤導或錯誤的法律建議,尤其是在未經專業審查的情況下。避免將模型用於未經授權或非法用途,如生成具爭議性或具偏見的法律建議。
|
97 |
|
98 |
## Bias, Risks, and Limitations
|
|
|
121 |
|
122 |
## How to Get Started with the Model
|
123 |
|
124 |
+
<!-- Use the code below to get started with the model. -->
|
125 |
+
|
126 |
### Using vLLM
|
127 |
|
128 |
要使用 [vLLM Docker image](https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html) 來啟動此模型,您可以按照以下操作:
|
|
|
135 |
vllm/vllm-openai:latest \
|
136 |
--model lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
|
137 |
```
|
|
|
138 |
## Training Details
|
139 |
|
140 |
+
### Training Data (for v1.1.0)
|
141 |
|
142 |
- [lianghsun/tw-legal-nlp](https://huggingface.co/datasets/lianghsun/tw-legal-nlp)
|
|
|
143 |
- [lianghsun/tw-legal-synthetic-qa](https://huggingface.co/datasets/lianghsun/tw-legal-synthetic-qa)
|
144 |
- [lianghsun/tw-law-article-qa](https://huggingface.co/datasets/lianghsun/tw-law-article-qa)
|
145 |
- [lianghsun/tw-judgment-qa](https://huggingface.co/datasets/lianghsun/tw-judgment-qa)
|
146 |
- [lianghsun/tw-bar-examination-2020-chat](https://huggingface.co/datasets/lianghsun/tw-bar-examination-2020-chat)
|
147 |
- [lianghsun/tw-emergency-medicine-bench](https://huggingface.co/datasets/lianghsun/tw-emergency-medicine-bench)
|
148 |
|
149 |
+
### Training procedure
|
|
|
|
|
|
|
150 |
|
151 |
#### Preprocessing
|
152 |
|
153 |
無。基本上我們並沒有針對 [meta-llama/Llama-3.2-3B-Instruct](meta-llama/Llama-3.2-3B-Instruct) 做任何的預訓練或更改其模型架構;Tokenizer 也是採用原生所提供的。
|
154 |
|
155 |
+
#### Training hyperparameters (for v1.1.0)
|
156 |
+
|
157 |
+
The following hyperparameters were used during training:
|
158 |
+
|
159 |
+
- **learning_rate:** 0.0004378 (value at epoch 3.9)
|
160 |
+
- **train_batch_size:** 12
|
161 |
+
- **eval_batch_size:** Not specified
|
162 |
+
- **seed:** Not specified
|
163 |
+
- **distributed_type:** single-GPU
|
164 |
+
- **num_devices:** 1
|
165 |
+
- **gradient_accumulation_steps:** 512
|
166 |
+
- **total_train_batch_size:** 6144 (train_batch_size * gradient_accumulation_steps)
|
167 |
+
- **optimizer:** AdamW
|
168 |
+
- **lr_scheduler_type:** cosine
|
169 |
+
- **lr_scheduler_warmup_steps:** 100
|
170 |
+
- **num_epochs:** 15
|
171 |
+
- **grad_norm:** 0.0899 (value at epoch 3.9)
|
172 |
+
- **global_step:** 645
|
173 |
+
|
174 |
+
### Speeds, Sizes, Times (for v1.1.0)
|
175 |
+
|
176 |
+
- **Duration**: 92h 27m 40s
|
177 |
+
- **Train runtime**: 92h 27m 40s
|
178 |
+
- **Train samples per second**: Not directly available
|
179 |
+
- **Train steps per second**: Approximately 0.002 steps/s
|
180 |
+
- **Total training FLOPs**: Not directly provided
|
181 |
+
- **Train loss**: 0.0512 (at epoch 3.9)
|
182 |
|
183 |
## Evaluation
|
184 |
|
185 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
|
|
186 |
|
187 |
### Testing Data, Factors & Metrics
|
188 |
|
|
|
214 |
|
215 |
## Model Examination
|
216 |
|
217 |
+
<!-- Relevant interpretability work for the model goes here -->
|
218 |
+
|
219 |
### 法條回覆
|
220 |
|
221 |
**Note**: ..(WIP)..
|
|
|
228 |
|
229 |
**Note**: ..(WIP)..
|
230 |
|
231 |
+
## Environmental Impact (for v1.1.0)
|
232 |
|
233 |
+
- **Hardware Type:** 1 x NVIDIA H100 NVL 80GB
|
234 |
+
- **Hours used:** 92h 27m 40s
|
235 |
+
- **Cloud Provider:** N/A
|
236 |
+
- **Compute Region:** N/A
|
237 |
+
- **Carbon Emitted:** N/A
|
|
|
|
|
238 |
|
239 |
## Technical Specifications
|
240 |
|
|
|
244 |
|
245 |
### Compute Infrastructure
|
246 |
|
247 |
+
#### Hardware (for v1.1.0)
|
248 |
|
249 |
+
- 1 x NVIDIA H100 NVL 80GB
|
250 |
|
251 |
#### Software
|
252 |
|
|
|
258 |
|
259 |
## Glossary
|
260 |
|
261 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
262 |
無。
|
263 |
|
264 |
## More Information
|
|
|
266 |
### 算力
|
267 |
儘管我們已準備了許多關於中華民國台灣法律領域的資料集,但由於算力資源有限,**無法將所有資料集進行完整訓練**(是的,我們並沒有將全部資料集都進行訓練,僅取出被認為最基礎的法律文本),導致模型尚未達到最佳表現。因此,目前的 checkpoint 是基於有限資源的版本。如果您有意願贊助算力,歡迎與我聯繫。我相信,若能將更多已準備但尚未納入訓練的法律語料進行微調,該模型將能達到繁體中文法律領域的最佳表現。
|
268 |
|
|
|
|
|
269 |
### 持績更新
|
270 |
此模型如有進一步資源,將會不定期更新。
|
271 |
|
|
|
279 |
|
280 |
### Framework versions
|
281 |
|
282 |
+
- Transformers 4.45.2
|
283 |
+
- Pytorch 2.4.1+cu121
|
284 |
+
- Datasets 2.21.0
|
285 |
+
- Tokenizers 0.20.0
|