aashish1904 commited on
Commit
ad34506
·
verified ·
1 Parent(s): ee9c267

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +71 -52
README.md CHANGED
@@ -1,12 +1,12 @@
1
 
2
  ---
3
 
 
 
4
  base_model: meta-llama/Llama-3.2-3B-Instruct
5
- library_name: sft
6
  datasets:
7
  - lianghsun/tw-emergency-medicine-bench
8
  - lianghsun/tw-legal-nlp
9
- - lianghsun/tw-structured-law-article
10
  - lianghsun/tw-legal-synthetic-qa
11
  - lianghsun/tw-law-article-qa
12
  - lianghsun/tw-judgment-qa
@@ -16,7 +16,13 @@ tags:
16
  - TW
17
  - Taiwan
18
  - ROC
19
- license: llama3.2
 
 
 
 
 
 
20
  language:
21
  - zh
22
  pipeline_tag: text-generation
@@ -32,13 +38,24 @@ This is quantized version of [lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct](http
32
  # Original Model Card
33
 
34
 
35
- # Model Card for Model lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
36
- ![Training Status](https://img.shields.io/badge/training-in%20progress-orange) ![Epoch Progress](https://img.shields.io/badge/epoch-10%25-yellow) ![Welcome Feedback](https://img.shields.io/badge/welcome-feedback-brightgreen)
37
 
 
38
 
39
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/W6-UDg0_cNm4WJVlR9tiD.png)
 
40
  基於 [meta-llama/Llama-3.2-3B-Instruct](meta-llama/Llama-3.2-3B-Instruct) 模型,透過中華民國台灣法律條文及判決書等相關資料集進行微調。
41
 
 
 
 
 
 
 
 
 
 
42
  ## Model Details
43
 
44
  ### Model Description
@@ -63,16 +80,19 @@ This is quantized version of [lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct](http
63
  ### Direct Use
64
 
65
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
66
  此模型可以直接用於理解和生成繁體中文法律文本,適合需要處理台灣法律相關問題的應用場景。模型預設的指令和回應能夠有效提供法律資訊、釐清法律條文、並生成符合法律專業的回應。其直接使用範圍包括但不限於法律資訊查詢、法律文本摘要、和基本的法條對話。
67
 
68
  ### Downstream Use
69
 
70
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
71
  經過微調後,該模型可用於更具體的法律任務,如自動判決書分析、法律實體識別(NER)、法規編號轉換,以及法律合規審查輔助。此模型可以無縫集成至法律數據科學應用或法律技術(LegalTech)系統中,幫助法律專業人士或企業提升工作效率。
72
 
73
  ### Out-of-Scope Use
74
 
75
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
76
  該模型並不適用於非法律相關領域的生成任務,且不應用於進行可能涉及誤導或錯誤的法律建議,尤其是在未經專業審查的情況下。避免將模型用於未經授權或非法用途,如生成具爭議性或具偏見的法律建議。
77
 
78
  ## Bias, Risks, and Limitations
@@ -101,6 +121,8 @@ This is quantized version of [lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct](http
101
 
102
  ## How to Get Started with the Model
103
 
 
 
104
  ### Using vLLM
105
 
106
  要使用 [vLLM Docker image](https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html) 來啟動此模型,您可以按照以下操作:
@@ -113,60 +135,54 @@ docker run --runtime nvidia --gpus all \
113
  vllm/vllm-openai:latest \
114
  --model lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
115
  ```
116
-
117
  ## Training Details
118
 
119
- ### Training Data
120
 
121
  - [lianghsun/tw-legal-nlp](https://huggingface.co/datasets/lianghsun/tw-legal-nlp)
122
- - [lianghsun/tw-structured-law-article](https://huggingface.co/datasets/lianghsun/tw-structured-law-article)
123
  - [lianghsun/tw-legal-synthetic-qa](https://huggingface.co/datasets/lianghsun/tw-legal-synthetic-qa)
124
  - [lianghsun/tw-law-article-qa](https://huggingface.co/datasets/lianghsun/tw-law-article-qa)
125
  - [lianghsun/tw-judgment-qa](https://huggingface.co/datasets/lianghsun/tw-judgment-qa)
126
  - [lianghsun/tw-bar-examination-2020-chat](https://huggingface.co/datasets/lianghsun/tw-bar-examination-2020-chat)
127
  - [lianghsun/tw-emergency-medicine-bench](https://huggingface.co/datasets/lianghsun/tw-emergency-medicine-bench)
128
 
129
-
130
- ### Training Procedure
131
-
132
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
133
 
134
  #### Preprocessing
135
 
136
  無。基本上我們並沒有針對 [meta-llama/Llama-3.2-3B-Instruct](meta-llama/Llama-3.2-3B-Instruct) 做任何的預訓練或更改其模型架構;Tokenizer 也是採用原生所提供的。
137
 
138
- #### Training Hyperparameters
139
-
140
- - **Training regime**: bf16 mixed precision
141
- - **Learning rate**: 5e-06
142
- - **Batch size**: 6 (per device)
143
- - **Epochs**: 10 *(Note: 由於算力成本考量,在 `epoch: 0.78` 就停止訓練)*
144
- - **Gradient accumulation steps**: 8
145
- - **Cutoff length**: 2048
146
- - **Scheduler**: cosine
147
- - **Optimizer**: adamw_torch
148
- - **Max gradient norm**: 1.0
149
- - **Warmup steps**: 100
150
- - **Logging steps**: 5
151
- - **Save steps**: 1000
152
- - **Max samples**: 1,500,000
153
-
154
- #### Speeds, Sizes, Times
155
-
156
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
157
- *Note: 由於算力成本考量,在 `epoch: 0.78` 就停止訓練,故以下資訊會有部份缺陷及不具參考價值*
158
-
159
- - **Duration**: 6h 12m 13s
160
- - **Train runtime**: 22,333 seconds
161
- - **Train samples per second**: `nan`
162
- - **Train steps per second**: `nan`
163
- - **Total training FLOPs**: `nan`
164
- - **Train loss**: `nan` (final loss: 0.3377)
165
 
166
  ## Evaluation
167
 
168
  <!-- This section describes the evaluation protocols and provides the results. -->
169
- **Note**: ..(WIP)..
170
 
171
  ### Testing Data, Factors & Metrics
172
 
@@ -198,6 +214,8 @@ docker run --runtime nvidia --gpus all \
198
 
199
  ## Model Examination
200
 
 
 
201
  ### 法條回覆
202
 
203
  **Note**: ..(WIP)..
@@ -210,14 +228,13 @@ docker run --runtime nvidia --gpus all \
210
 
211
  **Note**: ..(WIP)..
212
 
 
213
 
214
- ## Environmental Impact
215
-
216
- - **Hardware Type:** 8 x NVIDIA A100 40GB
217
- - **Hours used:** 6.03 hours
218
- - **Cloud Provider:** Google Cloud Platform
219
- - **Compute Region:** us-central1-c
220
- - **Carbon Emitted:** `0.86 kgCO$_2$eq`
221
 
222
  ## Technical Specifications
223
 
@@ -227,9 +244,9 @@ docker run --runtime nvidia --gpus all \
227
 
228
  ### Compute Infrastructure
229
 
230
- #### Hardware
231
 
232
- - 8 x NVIDIA A100 40GB
233
 
234
  #### Software
235
 
@@ -241,6 +258,7 @@ docker run --runtime nvidia --gpus all \
241
 
242
  ## Glossary
243
 
 
244
  無。
245
 
246
  ## More Information
@@ -248,8 +266,6 @@ docker run --runtime nvidia --gpus all \
248
  ### 算力
249
  儘管我們已準備了許多關於中華民國台灣法律領域的資料集,但由於算力資源有限,**無法將所有資料集進行完整訓練**(是的,我們並沒有將全部資料集都進行訓練,僅取出被認為最基礎的法律文本),導致模型尚未達到最佳表現。因此,目前的 checkpoint 是基於有限資源的版本。如果您有意願贊助算力,歡迎與我聯繫。我相信,若能將更多已準備但尚未納入訓練的法律語料進行微調,該模型將能達到繁體中文法律領域的最佳表現。
250
 
251
- **另外**,和 [lianghsun/Llama-3.2-Taiwan-Legal-1B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-Legal-1B-Instruct) 相較之下,又因為算力成本考量, [lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct](https://huggingface.co/lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct) 未訓練到 1 epoch,所以在表現上又更加不如預期。
252
-
253
  ### 持績更新
254
  此模型如有進一步資源,將會不定期更新。
255
 
@@ -263,4 +279,7 @@ docker run --runtime nvidia --gpus all \
263
 
264
  ### Framework versions
265
 
266
- - PEFT 0.12.0
 
 
 
 
1
 
2
  ---
3
 
4
+ library_name: transformers
5
+ license: llama3.2
6
  base_model: meta-llama/Llama-3.2-3B-Instruct
 
7
  datasets:
8
  - lianghsun/tw-emergency-medicine-bench
9
  - lianghsun/tw-legal-nlp
 
10
  - lianghsun/tw-legal-synthetic-qa
11
  - lianghsun/tw-law-article-qa
12
  - lianghsun/tw-judgment-qa
 
16
  - TW
17
  - Taiwan
18
  - ROC
19
+ - llama-factory
20
+ - full
21
+ - generated_from_trainer
22
+ model-index:
23
+ - name: train_2024-10-17
24
+ results: []
25
+ new_version: lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
26
  language:
27
  - zh
28
  pipeline_tag: text-generation
 
38
  # Original Model Card
39
 
40
 
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
 
44
+ # Model Card for Model lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
45
 
46
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/W6-UDg0_cNm4WJVlR9tiD.png)
47
+
48
  基於 [meta-llama/Llama-3.2-3B-Instruct](meta-llama/Llama-3.2-3B-Instruct) 模型,透過中華民國台灣法律條文及判決書等相關資料集進行微調。
49
 
50
+ ## Model Update History
51
+
52
+ | Update Date | Model Version | Key Changes |
53
+ |--------------|-----------------------|-------------------------------------|
54
+ | 2024-10-17 | v1.1.0 | Experimental fine-tuning on v1.0.0 with added legal code data from the Republic of China (Taiwan) |
55
+ | 2024-10-10 | v1.0.0 | Full model training completed, but missing legal code data for the Republic of China (Taiwan) |
56
+ | 2024-09-27 | v0.1.0 | Model v0.1.0 released, but training was interrupted after 3 epochs due to lack of compute resources |
57
+
58
+
59
  ## Model Details
60
 
61
  ### Model Description
 
80
  ### Direct Use
81
 
82
  <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
83
+
84
  此模型可以直接用於理解和生成繁體中文法律文本,適合需要處理台灣法律相關問題的應用場景。模型預設的指令和回應能夠有效提供法律資訊、釐清法律條文、並生成符合法律專業的回應。其直接使用範圍包括但不限於法律資訊查詢、法律文本摘要、和基本的法條對話。
85
 
86
  ### Downstream Use
87
 
88
  <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
89
+
90
  經過微調後,該模型可用於更具體的法律任務,如自動判決書分析、法律實體識別(NER)、法規編號轉換,以及法律合規審查輔助。此模型可以無縫集成至法律數據科學應用或法律技術(LegalTech)系統中,幫助法律專業人士或企業提升工作效率。
91
 
92
  ### Out-of-Scope Use
93
 
94
  <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
95
+
96
  該模型並不適用於非法律相關領域的生成任務,且不應用於進行可能涉及誤導或錯誤的法律建議,尤其是在未經專業審查的情況下。避免將模型用於未經授權或非法用途,如生成具爭議性或具偏見的法律建議。
97
 
98
  ## Bias, Risks, and Limitations
 
121
 
122
  ## How to Get Started with the Model
123
 
124
+ <!-- Use the code below to get started with the model. -->
125
+
126
  ### Using vLLM
127
 
128
  要使用 [vLLM Docker image](https://docs.vllm.ai/en/latest/serving/deploying_with_docker.html) 來啟動此模型,您可以按照以下操作:
 
135
  vllm/vllm-openai:latest \
136
  --model lianghsun/Llama-3.2-Taiwan-Legal-3B-Instruct
137
  ```
 
138
  ## Training Details
139
 
140
+ ### Training Data (for v1.1.0)
141
 
142
  - [lianghsun/tw-legal-nlp](https://huggingface.co/datasets/lianghsun/tw-legal-nlp)
 
143
  - [lianghsun/tw-legal-synthetic-qa](https://huggingface.co/datasets/lianghsun/tw-legal-synthetic-qa)
144
  - [lianghsun/tw-law-article-qa](https://huggingface.co/datasets/lianghsun/tw-law-article-qa)
145
  - [lianghsun/tw-judgment-qa](https://huggingface.co/datasets/lianghsun/tw-judgment-qa)
146
  - [lianghsun/tw-bar-examination-2020-chat](https://huggingface.co/datasets/lianghsun/tw-bar-examination-2020-chat)
147
  - [lianghsun/tw-emergency-medicine-bench](https://huggingface.co/datasets/lianghsun/tw-emergency-medicine-bench)
148
 
149
+ ### Training procedure
 
 
 
150
 
151
  #### Preprocessing
152
 
153
  無。基本上我們並沒有針對 [meta-llama/Llama-3.2-3B-Instruct](meta-llama/Llama-3.2-3B-Instruct) 做任何的預訓練或更改其模型架構;Tokenizer 也是採用原生所提供的。
154
 
155
+ #### Training hyperparameters (for v1.1.0)
156
+
157
+ The following hyperparameters were used during training:
158
+
159
+ - **learning_rate:** 0.0004378 (value at epoch 3.9)
160
+ - **train_batch_size:** 12
161
+ - **eval_batch_size:** Not specified
162
+ - **seed:** Not specified
163
+ - **distributed_type:** single-GPU
164
+ - **num_devices:** 1
165
+ - **gradient_accumulation_steps:** 512
166
+ - **total_train_batch_size:** 6144 (train_batch_size * gradient_accumulation_steps)
167
+ - **optimizer:** AdamW
168
+ - **lr_scheduler_type:** cosine
169
+ - **lr_scheduler_warmup_steps:** 100
170
+ - **num_epochs:** 15
171
+ - **grad_norm:** 0.0899 (value at epoch 3.9)
172
+ - **global_step:** 645
173
+
174
+ ### Speeds, Sizes, Times (for v1.1.0)
175
+
176
+ - **Duration**: 92h 27m 40s
177
+ - **Train runtime**: 92h 27m 40s
178
+ - **Train samples per second**: Not directly available
179
+ - **Train steps per second**: Approximately 0.002 steps/s
180
+ - **Total training FLOPs**: Not directly provided
181
+ - **Train loss**: 0.0512 (at epoch 3.9)
182
 
183
  ## Evaluation
184
 
185
  <!-- This section describes the evaluation protocols and provides the results. -->
 
186
 
187
  ### Testing Data, Factors & Metrics
188
 
 
214
 
215
  ## Model Examination
216
 
217
+ <!-- Relevant interpretability work for the model goes here -->
218
+
219
  ### 法條回覆
220
 
221
  **Note**: ..(WIP)..
 
228
 
229
  **Note**: ..(WIP)..
230
 
231
+ ## Environmental Impact (for v1.1.0)
232
 
233
+ - **Hardware Type:** 1 x NVIDIA H100 NVL 80GB
234
+ - **Hours used:** 92h 27m 40s
235
+ - **Cloud Provider:** N/A
236
+ - **Compute Region:** N/A
237
+ - **Carbon Emitted:** N/A
 
 
238
 
239
  ## Technical Specifications
240
 
 
244
 
245
  ### Compute Infrastructure
246
 
247
+ #### Hardware (for v1.1.0)
248
 
249
+ - 1 x NVIDIA H100 NVL 80GB
250
 
251
  #### Software
252
 
 
258
 
259
  ## Glossary
260
 
261
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
262
  無。
263
 
264
  ## More Information
 
266
  ### 算力
267
  儘管我們已準備了許多關於中華民國台灣法律領域的資料集,但由於算力資源有限,**無法將所有資料集進行完整訓練**(是的,我們並沒有將全部資料集都進行訓練,僅取出被認為最基礎的法律文本),導致模型尚未達到最佳表現。因此,目前的 checkpoint 是基於有限資源的版本。如果您有意願贊助算力,歡迎與我聯繫。我相信,若能將更多已準備但尚未納入訓練的法律語料進行微調,該模型將能達到繁體中文法律領域的最佳表現。
268
 
 
 
269
  ### 持績更新
270
  此模型如有進一步資源,將會不定期更新。
271
 
 
279
 
280
  ### Framework versions
281
 
282
+ - Transformers 4.45.2
283
+ - Pytorch 2.4.1+cu121
284
+ - Datasets 2.21.0
285
+ - Tokenizers 0.20.0