--- license: apache-2.0 datasets: - tiiuae/falcon-refinedweb - instruction-pretrain/ft-instruction-synthesizer-collection language: - en pipeline_tag: text-generation base_model: instruction-pretrain/InstructLM-500M --- # QuantFactory/InstructLM-500M-GGUF This is quantized version of [instruction-pretrain/InstructLM-500M](https://huggingface.co./instruction-pretrain/InstructLM-500M) created using llama.cpp # Model Description ## Instruction Pre-Training: Language Models are Supervised Multitask Learners This repo contains the **general models pre-trained from scratch** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co./papers/2406.14491). We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training. **In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning.** In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.

## Resources **🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗** - Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co./instruction-pretrain/instruction-synthesizer) - Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co./datasets/instruction-pretrain/ft-instruction-synthesizer-collection) - General Models Pre-Trained from Scratch: - [InstructLM-500M](https://huggingface.co./instruction-pretrain/InstructLM-500M) - [InstructLM-1.3B](https://huggingface.co./instruction-pretrain/InstructLM-1.3B) - Domain-Specific Models Pre-Trained from Llama3-8B: - [Finance-Llama3-8B](https://huggingface.co./instruction-pretrain/finance-Llama3-8B) - [Biomedicine-Llama3-8B](https://huggingface.co./instruction-pretrain/medicine-Llama3-8B) ## General Pre-Training From Scratch We augment the [RefinedWeb corproa](https://huggingface.co./datasets/tiiuae/falcon-refinedweb) with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co./instruction-pretrain/instruction-synthesizer) to pre-train general langauge models from scratch. To evaluate our general base model using the [lm-evaluation-harness framework](https://github.com/EleutherAI/lm-evaluation-harness) 1. Setup dependencies: ```bash git clone https://github.com/EleutherAI/lm-evaluation-harness cd lm-evaluation-harness pip install -e . ``` 2. Evalaute: ```bash MODEL=instruction-pretrain/InstructLM-500M add_bos_token=True # this flag is needed because lm-eval-harness set add_bos_token to False by default, but ours require add_bos_token to be True accelerate launch -m lm_eval --model hf \ --model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \ --gen_kwargs do_sample=False \ --tasks piqa,hellaswag,winogrande \ --batch_size auto \ --num_fewshot 0 accelerate launch -m lm_eval --model hf \ --model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \ --gen_kwargs do_sample=False \ --tasks social_iqa,ai2_arc,openbookqa,boolq,mmlu \ --batch_size auto \ --num_fewshot 5 ``` ## Model Citation If you find our work helpful, please cite us: [AdaptLLM](https://huggingface.co./papers/2309.09530) ```bibtex @inproceedings{ cheng2024adapting, title={Adapting Large Language Models via Reading Comprehension}, author={Daixuan Cheng and Shaohan Huang and Furu Wei}, booktitle={The Twelfth International Conference on Learning Representations}, year={2024}, url={https://openreview.net/forum?id=y886UXPEZ0} } ```