File size: 4,414 Bytes
578d405 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
datasets:
- tiiuae/falcon-refinedweb
- instruction-pretrain/ft-instruction-synthesizer-collection
language:
- en
pipeline_tag: text-generation
base_model: instruction-pretrain/InstructLM-500M
---
# QuantFactory/InstructLM-500M-GGUF
This is quantized version of [instruction-pretrain/InstructLM-500M](https://huggingface.co./instruction-pretrain/InstructLM-500M) created using llama.cpp
# Model Description
## Instruction Pre-Training: Language Models are Supervised Multitask Learners
This repo contains the **general models pre-trained from scratch** in our paper [Instruction Pre-Training: Language Models are Supervised Multitask Learners](https://huggingface.co./papers/2406.14491).
We explore supervised multitask pre-training by proposing ***Instruction Pre-Training***, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train language models. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of *Instruction Pre-Training*. Instruction Pre-Training* outperforms *Vanilla Pre-training* in both general pre-training from scratch and domain-adaptive continual pre-training. **In pre-training from scratch, *Instruction Pre-Training* not only improves pre-trained base models but also benefits more from further instruction tuning.** In continual pre-training, *Instruction Pre-Training* enables Llama3-8B to be comparable to or even outperform Llama3-70B.
<p align='center'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/66711d2ee12fa6cc5f5dfc89/vRdsFIVQptbNaGiZ18Lih.png" width="400">
</p>
## Resources
**🤗 We share our data and models with example usages, feel free to open any issues or discussions! 🤗**
- Context-Based Instruction Synthesizer: [instruction-synthesizer](https://huggingface.co./instruction-pretrain/instruction-synthesizer)
- Fine-Tuning Data for the Synthesizer: [ft-instruction-synthesizer-collection](https://huggingface.co./datasets/instruction-pretrain/ft-instruction-synthesizer-collection)
- General Models Pre-Trained from Scratch:
- [InstructLM-500M](https://huggingface.co./instruction-pretrain/InstructLM-500M)
- [InstructLM-1.3B](https://huggingface.co./instruction-pretrain/InstructLM-1.3B)
- Domain-Specific Models Pre-Trained from Llama3-8B:
- [Finance-Llama3-8B](https://huggingface.co./instruction-pretrain/finance-Llama3-8B)
- [Biomedicine-Llama3-8B](https://huggingface.co./instruction-pretrain/medicine-Llama3-8B)
## General Pre-Training From Scratch
We augment the [RefinedWeb corproa](https://huggingface.co./datasets/tiiuae/falcon-refinedweb) with instruction-response pairs generated by our [context-based instruction synthesizer](https://huggingface.co./instruction-pretrain/instruction-synthesizer) to pre-train general langauge models from scratch.
To evaluate our general base model using the [lm-evaluation-harness framework](https://github.com/EleutherAI/lm-evaluation-harness)
1. Setup dependencies:
```bash
git clone https://github.com/EleutherAI/lm-evaluation-harness
cd lm-evaluation-harness
pip install -e .
```
2. Evalaute:
```bash
MODEL=instruction-pretrain/InstructLM-500M
add_bos_token=True # this flag is needed because lm-eval-harness set add_bos_token to False by default, but ours require add_bos_token to be True
accelerate launch -m lm_eval --model hf \
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
--gen_kwargs do_sample=False \
--tasks piqa,hellaswag,winogrande \
--batch_size auto \
--num_fewshot 0
accelerate launch -m lm_eval --model hf \
--model_args pretrained=${MODEL},add_bos_token=${add_bos_token},dtype=float16 \
--gen_kwargs do_sample=False \
--tasks social_iqa,ai2_arc,openbookqa,boolq,mmlu \
--batch_size auto \
--num_fewshot 5
```
## Model Citation
If you find our work helpful, please cite us:
[AdaptLLM](https://huggingface.co./papers/2309.09530)
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
``` |