Text Generation
Transformers
GGUF
English
llama
Inference Endpoints
File size: 1,869 Bytes
def280b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

---

license: apache-2.0
datasets:
- gair-prox/FineWeb-pro
language:
- en
tags:
- llama
pipeline_tag: text-generation
library_name: transformers

---

[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)


# QuantFactory/FW-ProX-1.7B-GGUF
This is quantized version of [gair-prox/FW-ProX-1.7B](https://huggingface.co./gair-prox/FW-ProX-1.7B) created using llama.cpp

# Original Model Card


# FW-ProX-1.7B

<p align="center">
  <img src="prox-teaser.png">
</p>

[ArXiv](https://arxiv.org/abs/2409.17115) | [Models](https://huggingface.co./gair-prox/FW-ProX-1.7B) | [Data](https://huggingface.co./datasets/gair-prox/FineWeb-pro) | [Code](https://github.com/GAIR-NLP/program-every-example)

**FW-ProX-1.7B** is a small language model. It was and trained on the [FineWeb-pro](https://huggingface.co./datasets/gair-prox/FineWeb-pro) for 50B tokens. 

## Evaluations

ProX models are evaluated over 10 language model benchmarks in zero-shot setting.

|                       | ArC-c | ARC-e | CSQA  | HellaS | MMLU  | OBQA  | PiQA  | SIQA  | WinoG | SciQ  | AVG  |
|-----------------------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|------|
| raw | 28.5 | 52.6 | 33.9 | 53.2 | 29.8 | 32.6 | 72.9 | 40.2 | 53.0 | 77.1 | 47.4 |
| ours | 34.4 | 63.9 | 32.6 | 53.0 | 33.1 | 34.4 | 73.1 | 39.3 | 52.7 | 81.5 | 49.8 |

### Citation
```
@article{zhou2024programming,
  title={Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale},
  author={Zhou, Fan and Wang, Zengzhi and Liu, Qian and Li, Junlong and Liu, Pengfei},
  journal={arXiv preprint arXiv:2409.17115},
  year={2024}
}
```