--- language: - en license: other tags: - axolotl - generated_from_trainer - instruct - finetune - chatml - gpt4 - synthetic data - science - physics - chemistry - biology - math - llama - llama3 base_model: meta-llama/Meta-Llama-3-8B datasets: - allenai/ai2_arc - camel-ai/physics - camel-ai/chemistry - camel-ai/biology - camel-ai/math - metaeval/reclor - openbookqa - mandyyyyii/scibench - derek-thomas/ScienceQA - TIGER-Lab/ScienceEval - jondurbin/airoboros-3.2 - LDJnr/Capybara - Cot-Alpaca-GPT4-From-OpenHermes-2.5 - STEM-AI-mtl/Electrical-engineering - knowrohit07/saraswati-stem - sablo/oasst2_curated - lmsys/lmsys-chat-1m - TIGER-Lab/MathInstruct - bigbio/med_qa - meta-math/MetaMathQA-40K - openbookqa - piqa - metaeval/reclor - derek-thomas/ScienceQA - scibench - sciq - Open-Orca/SlimOrca - migtissera/Synthia-v1.3 - TIGER-Lab/ScienceEval - allenai/WildChat - microsoft/orca-math-word-problems-200k - openchat/openchat_sharegpt4_dataset - teknium/GPTeacher-General-Instruct - m-a-p/CodeFeedback-Filtered-Instruction - totally-not-an-llm/EverythingLM-data-V3 - HuggingFaceH4/no_robots - OpenAssistant/oasst_top1_2023-08-25 - WizardLM/WizardLM_evol_instruct_70k model-index: - name: Einstein-v6.1-Llama3-8B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.46 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.41 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.19 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 55.1 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.32 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.11 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 45.68 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 29.38 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 5.74 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 4.25 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 11.23 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 23.68 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B name: Open LLM Leaderboard --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/Einstein-v6.1-Llama3-8B-GGUF This is quantized version of [Weyaxi/Einstein-v6.1-Llama3-8B](https://huggingface.co./Weyaxi/Einstein-v6.1-Llama3-8B) created using llama.cpp # Original Model Card ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/5s12oq859qLfDkkTNam_C.png) # 🔬 Einstein-v6.1-Llama3-8B This model is a full fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co./meta-llama/Meta-Llama-3-8B) on diverse datasets. This model is finetuned using `8xRTX3090` + `1xRTXA6000` using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl). This model's training was sponsored by [sablo.ai](https://sablo.ai).
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: data/merged_all.json ds_type: json type: alpaca conversation: chatml - path: data/gpteacher-instruct-special-alpaca.json ds_type: json type: gpteacher conversation: chatml - path: data/wizardlm_evol_instruct_70k_random_half.json ds_type: json type: alpaca conversation: chatml - path: data/capybara_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/synthia-v1.3_sharegpt_12500.json ds_type: json type: sharegpt conversation: chatml - path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/slimorca_dedup_filtered_95k_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/allenai_wild_chat_gpt4_english_toxic_random_half_4k_sharegpt.json ds_type: json type: sharegpt strict: false conversation: chatml - path: data/pippa_bagel_repo_3k_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/gpt4_data_lmys_1m_sharegpt.json ds_type: json type: sharegpt conversation: chatml - path: data/sharegpt_gpt4_english.json ds_type: json type: sharegpt conversation: chatml - path: data/no_robots_sharegpt.json ds_type: json type: sharegpt strict: false conversation: chatml - path: data/oasst_top1_from_fusechatmixture_sharegpt.json ds_type: json type: sharegpt strict: false conversation: chatml - path: data/everythinglm-data-v3_sharegpt.json ds_type: json type: sharegpt strict: false conversation: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.002 output_dir: ./Einstein-v6.1-Llama3-8B-model sequence_len: 8192 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false wandb_project: Einstein wandb_entity: wandb_watch: wandb_name: Einstein-v6.1-Llama3-2-epoch wandb_log_model: hub_model_id: Weyaxi/Einstein-v6.1-Llama3-8B save_safetensors: true gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit # look lr_scheduler: cosine learning_rate: 0.000005 # look train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 2 debug: deepspeed: zero3_bf16_cpuoffload_params.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "<|im_end|>" unk_token: "" pad_token: <|end_of_text|> # changed tokens: - "<|im_start|>" ```

# 💬 Prompt Template You can use ChatML prompt template while using the model: ### ChatML ``` <|im_start|>system {system}<|im_end|> <|im_start|>user {user}<|im_end|> <|im_start|>assistant {asistant}<|im_end|> ``` This prompt template is available as a [chat template](https://huggingface.co./docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are helpful AI asistant."}, {"role": "user", "content": "Hello!"} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` # 📊 Datasets used in this model The datasets used to train this model are listed in the metadata section of the model card. Please note that certain datasets mentioned in the metadata may have undergone filtering based on various criteria. The results of this filtering process and its outcomes are in the data folder of this repository: [Weyaxi/Einstein-v6.1-Llama3-8B/data](https://huggingface.co./Weyaxi/Einstein-v6.1-Llama3-8B/tree/main/data) # 🔄 Quantizationed versions ## GGUF [@bartowski](https://huggingface.co./bartowski) - https://huggingface.co./bartowski/Einstein-v6.1-Llama3-8B-GGUF ## ExLlamaV2 [@bartowski](https://huggingface.co./bartowski) - https://huggingface.co./bartowski/Einstein-v6.1-Llama3-8B-exl2 ## AWQ [@solidrust](https://huggingface.co./solidrust) - https://huggingface.co./solidrust/Einstein-v6.1-Llama3-8B-AWQ # 🎯 [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Weyaxi__Einstein-v6.1-Llama3-8B) | Metric |Value| |---------------------------------|----:| |Avg. |68.60| |AI2 Reasoning Challenge (25-Shot)|62.46| |HellaSwag (10-Shot) |82.41| |MMLU (5-Shot) |66.19| |TruthfulQA (0-shot) |55.10| |Winogrande (5-shot) |79.32| |GSM8k (5-shot) |66.11| # 🎯 [Open LLM Leaderboard v2 Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Weyaxi__Einstein-v6.1-Llama3-8B) | Metric |Value| |-------------------|----:| |Avg. |19.99| |IFEval (0-Shot) |45.68| |BBH (3-Shot) |29.38| |MATH Lvl 5 (4-Shot)| 5.74| |GPQA (0-shot) | 4.25| |MuSR (0-shot) |11.23| |MMLU-PRO (5-shot) |23.68| # 📚 Some resources, discussions and reviews aboout this model #### 🐦 Announcement tweet: - https://twitter.com/Weyaxi/status/1783050724659675627 #### 🔍 Reddit post in r/LocalLLaMA: - https://www.reddit.com/r/LocalLLaMA/comments/1cdlym1/introducing_einstein_v61_based_on_the_new_llama3/ #### ▶️ Youtube Video(s) - [Install Einstein v6.1 Llama3-8B Locally on Windows](https://www.youtube.com/watch?v=VePvv6OM0JY) #### 📱 Octopus-V4-3B - [Octopus-V4-3B](https://huggingface.co./NexaAIDev/Octopus-v4) leverages the incredible physics capabilities of [Einstein-v6.1-Llama3-8B](https://huggingface.co./Weyaxi/Einstein-v6.1-Llama3-8B) in their model. # 🤖 Additional information about training This model is full fine-tuned for 2 epoch. Total number of steps was 2026.
Loss graph ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6468ce47e134d050a58aa89c/Ycs7ZpoqmxFt0u9rybCO1.png)

# 🤝 Acknowledgments Thanks to [sablo.ai](https://sablo.ai) for sponsoring this model. Thanks to all the dataset authors mentioned in the datasets section. Thanks to [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) for making the repository I used to make this model. Thanks to all open source AI community. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) If you would like to support me: [☕ Buy Me a Coffee](https://www.buymeacoffee.com/weyaxi)