--- license: llama3 pipeline_tag: text-generation base_model: OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.2-Instruct --- # QuantFactory/ArliAI-Llama-3-8B-Dolfin-v0.2-Instruct-GGUF This is quantized version of [OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.2-Instruct](https://huggingface.co./OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.2-Instruct) created using llama.cpp # Model Description Based on Meta-Llama-3-8b-Instruct, and is governed by Meta Llama 3 License agreement: https://huggingface.co./meta-llama/Meta-Llama-3-8B-Instruct v0.2 version with better improved dolphin based dataset but only 150K for testing instead of the full 850K. Doesn't seem to work that well so I will need to add the rest of the dataset. We are happy for anyone to try it out and give some feedback. Training: - 4096 sequence length, while the base model is 8192 sequence length. From testing it still performs the same 8192 context just fine. - Trained on a modified and improved version of Cognitive Computations Eric Hartford's Dolphin dataset. https://huggingface.co./datasets/cognitivecomputations/dolphin - Training duration is around 1 day on 2x RTX3090 on our own machine, using 4-bit loading and Qlora 64-rank 128-alpha resulting in ~2% trainable weights. The goal for this model is to have the model less-censored and great at general tasks like the previous dolphin based models by Eric Hartford. Instruct format: ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` Quants: [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) Axolotl Config: ``` base_model: /home/owen/models/Meta-Llama-3-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer train_on_inputs: false group_by_length: false load_in_8bit: false load_in_4bit: true strict: false sequence_len: 4096 bf16: true fp16: false tf32: false flash_attention: true # Data datasets: - path: /home/owen/datasets/cleaned-dolphin201-sharegpt2-uuid-improved.jsonl type: field_instruction: input field_output: output format: "<|start_header_id|>user<|end_header_id|>\n\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" no_input_format: "<|start_header_id|>user<|end_header_id|>\n\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" warmup_steps: 10 dataset_prepared_path: ./last_run_prepared # Iterations num_epochs: 1 saves_per_epoch: 4 # Evaluation val_set_size: 0.01 eval_table_size: eval_table_max_new_tokens: eval_sample_packing: false evals_per_epoch: 4 # LoRA output_dir: ./qlora-out adapter: qlora lora_model_dir: lora_r: 64 lora_alpha: 128 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: save_safetensors: true # Sampling sample_packing: true pad_to_sequence_len: true # Batching gradient_accumulation_steps: 32 micro_batch_size: 2 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true # wandb wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb wandb_project: llama-3-8b-instruct-dolphin-q wandb_entity: # A wandb Team name if using a Team wandb_watch: wandb_name: 64-128-4096-1ep-v0.2 wandb_run_id: # Set the ID of your wandb run wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training # Optimizer optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 # Misc early_stopping_patience: resume_from_checkpoint: logging_steps: 1 debug: deepspeed: /home/owen/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.1 special_tokens: pad_token: <|end_of_text|> ```