munish0838
commited on
Commit
•
d80efe0
1
Parent(s):
c19e623
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
base_model: OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.2-Instruct
|
5 |
+
---
|
6 |
+
|
7 |
+
# QuantFactory/ArliAI-Llama-3-8B-Dolfin-v0.2-Instruct-GGUF
|
8 |
+
This is quantized version of [OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.2-Instruct](https://huggingface.co/OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.2-Instruct) created using llama.cpp
|
9 |
+
|
10 |
+
# Model Description
|
11 |
+
Based on Meta-Llama-3-8b-Instruct, and is governed by Meta Llama 3 License agreement:
|
12 |
+
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
|
13 |
+
|
14 |
+
v0.2 version with better improved dolphin based dataset but only 150K for testing instead of the full 850K. Doesn't seem to work that well so I will need to add the rest of the dataset.
|
15 |
+
|
16 |
+
We are happy for anyone to try it out and give some feedback.
|
17 |
+
|
18 |
+
|
19 |
+
Training:
|
20 |
+
- 4096 sequence length, while the base model is 8192 sequence length. From testing it still performs the same 8192 context just fine.
|
21 |
+
- Trained on a modified and improved version of Cognitive Computations Eric Hartford's Dolphin dataset. https://huggingface.co/datasets/cognitivecomputations/dolphin
|
22 |
+
- Training duration is around 1 day on 2x RTX3090 on our own machine, using 4-bit loading and Qlora 64-rank 128-alpha resulting in ~2% trainable weights.
|
23 |
+
|
24 |
+
|
25 |
+
The goal for this model is to have the model less-censored and great at general tasks like the previous dolphin based models by Eric Hartford.
|
26 |
+
|
27 |
+
|
28 |
+
Instruct format:
|
29 |
+
```
|
30 |
+
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
31 |
+
|
32 |
+
{{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|>
|
33 |
+
|
34 |
+
{{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
35 |
+
|
36 |
+
{{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|>
|
37 |
+
|
38 |
+
{{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
39 |
+
```
|
40 |
+
|
41 |
+
|
42 |
+
Quants:
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
47 |
+
|
48 |
+
Axolotl Config:
|
49 |
+
```
|
50 |
+
base_model: /home/owen/models/Meta-Llama-3-8B-Instruct
|
51 |
+
model_type: LlamaForCausalLM
|
52 |
+
tokenizer_type: AutoTokenizer
|
53 |
+
|
54 |
+
train_on_inputs: false
|
55 |
+
group_by_length: false
|
56 |
+
load_in_8bit: false
|
57 |
+
load_in_4bit: true
|
58 |
+
strict: false
|
59 |
+
sequence_len: 4096
|
60 |
+
bf16: true
|
61 |
+
fp16: false
|
62 |
+
tf32: false
|
63 |
+
flash_attention: true
|
64 |
+
|
65 |
+
# Data
|
66 |
+
datasets:
|
67 |
+
- path: /home/owen/datasets/cleaned-dolphin201-sharegpt2-uuid-improved.jsonl
|
68 |
+
type:
|
69 |
+
field_instruction: input
|
70 |
+
field_output: output
|
71 |
+
format: "<|start_header_id|>user<|end_header_id|>\n\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
72 |
+
no_input_format: "<|start_header_id|>user<|end_header_id|>\n\n{instruction}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
73 |
+
|
74 |
+
warmup_steps: 10
|
75 |
+
dataset_prepared_path: ./last_run_prepared
|
76 |
+
|
77 |
+
# Iterations
|
78 |
+
num_epochs: 1
|
79 |
+
saves_per_epoch: 4
|
80 |
+
|
81 |
+
# Evaluation
|
82 |
+
val_set_size: 0.01
|
83 |
+
eval_table_size:
|
84 |
+
eval_table_max_new_tokens:
|
85 |
+
eval_sample_packing: false
|
86 |
+
evals_per_epoch: 4
|
87 |
+
|
88 |
+
# LoRA
|
89 |
+
output_dir: ./qlora-out
|
90 |
+
adapter: qlora
|
91 |
+
lora_model_dir:
|
92 |
+
lora_r: 64
|
93 |
+
lora_alpha: 128
|
94 |
+
lora_dropout: 0.05
|
95 |
+
lora_target_linear: true
|
96 |
+
lora_fan_in_fan_out:
|
97 |
+
lora_target_modules:
|
98 |
+
save_safetensors: true
|
99 |
+
|
100 |
+
# Sampling
|
101 |
+
sample_packing: true
|
102 |
+
pad_to_sequence_len: true
|
103 |
+
|
104 |
+
# Batching
|
105 |
+
gradient_accumulation_steps: 32
|
106 |
+
micro_batch_size: 2
|
107 |
+
gradient_checkpointing: true
|
108 |
+
gradient_checkpointing_kwargs:
|
109 |
+
use_reentrant: true
|
110 |
+
|
111 |
+
# wandb
|
112 |
+
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
|
113 |
+
wandb_project: llama-3-8b-instruct-dolphin-q
|
114 |
+
wandb_entity: # A wandb Team name if using a Team
|
115 |
+
wandb_watch:
|
116 |
+
wandb_name: 64-128-4096-1ep-v0.2
|
117 |
+
wandb_run_id: # Set the ID of your wandb run
|
118 |
+
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
119 |
+
|
120 |
+
# Optimizer
|
121 |
+
optimizer: paged_adamw_8bit
|
122 |
+
lr_scheduler: cosine
|
123 |
+
learning_rate: 0.0002
|
124 |
+
|
125 |
+
# Misc
|
126 |
+
early_stopping_patience:
|
127 |
+
resume_from_checkpoint:
|
128 |
+
logging_steps: 1
|
129 |
+
debug:
|
130 |
+
deepspeed: /home/owen/axolotl/deepspeed_configs/zero3_bf16.json
|
131 |
+
weight_decay: 0.1
|
132 |
+
special_tokens:
|
133 |
+
pad_token: <|end_of_text|>
|
134 |
+
```
|