File size: 15,347 Bytes
7806245
 
645bc04
 
 
 
 
 
 
 
 
7806245
 
645bc04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
---
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-finetuned-oldapp-oct-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-finetuned-oldapp-oct-1

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on the PushkarA07/oldapptiles5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0968
- Mean Iou: 0.9990
- Mean Accuracy: 1.0
- Overall Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|
| 0.6574        | 0.7143  | 10   | 0.6497          | 0.9990   | 1.0           | 1.0              |
| 0.6005        | 1.4286  | 20   | 0.5761          | 0.9990   | 1.0           | 1.0              |
| 0.5676        | 2.1429  | 30   | 0.4740          | 0.9990   | 1.0           | 1.0              |
| 0.6287        | 2.8571  | 40   | 0.4394          | 0.9990   | 1.0           | 1.0              |
| 0.5121        | 3.5714  | 50   | 0.4173          | 0.9990   | 1.0           | 1.0              |
| 0.4744        | 4.2857  | 60   | 0.3842          | 0.9990   | 1.0           | 1.0              |
| 0.4413        | 5.0     | 70   | 0.4107          | 0.9990   | 1.0           | 1.0              |
| 0.4134        | 5.7143  | 80   | 0.3737          | 0.9990   | 1.0           | 1.0              |
| 0.4139        | 6.4286  | 90   | 0.3424          | 0.9990   | 1.0           | 1.0              |
| 0.4097        | 7.1429  | 100  | 0.3248          | 0.9990   | 1.0           | 1.0              |
| 0.3645        | 7.8571  | 110  | 0.3218          | 0.9990   | 1.0           | 1.0              |
| 0.3287        | 8.5714  | 120  | 0.2928          | 0.9990   | 1.0           | 1.0              |
| 0.3113        | 9.2857  | 130  | 0.3021          | 0.9990   | 1.0           | 1.0              |
| 0.3085        | 10.0    | 140  | 0.2962          | 0.9990   | 1.0           | 1.0              |
| 0.2879        | 10.7143 | 150  | 0.2596          | 0.9990   | 1.0           | 1.0              |
| 0.2958        | 11.4286 | 160  | 0.2409          | 0.9990   | 1.0           | 1.0              |
| 0.2788        | 12.1429 | 170  | 0.2396          | 0.9990   | 1.0           | 1.0              |
| 0.2565        | 12.8571 | 180  | 0.2076          | 0.9990   | 1.0           | 1.0              |
| 0.2457        | 13.5714 | 190  | 0.2184          | 0.9990   | 1.0           | 1.0              |
| 0.2328        | 14.2857 | 200  | 0.1962          | 0.9990   | 1.0           | 1.0              |
| 0.1916        | 15.0    | 210  | 0.2003          | 0.9990   | 1.0           | 1.0              |
| 0.3277        | 15.7143 | 220  | 0.1875          | 0.9990   | 1.0           | 1.0              |
| 0.2053        | 16.4286 | 230  | 0.1718          | 0.9990   | 1.0           | 1.0              |
| 0.2555        | 17.1429 | 240  | 0.1571          | 0.9990   | 1.0           | 1.0              |
| 0.1863        | 17.8571 | 250  | 0.1546          | 0.9990   | 1.0           | 1.0              |
| 0.1944        | 18.5714 | 260  | 0.1503          | 0.9990   | 1.0           | 1.0              |
| 0.2652        | 19.2857 | 270  | 0.1456          | 0.9990   | 1.0           | 1.0              |
| 0.1614        | 20.0    | 280  | 0.1442          | 0.9990   | 1.0           | 1.0              |
| 0.139         | 20.7143 | 290  | 0.1413          | 0.9990   | 1.0           | 1.0              |
| 0.1631        | 21.4286 | 300  | 0.1308          | 0.9990   | 1.0           | 1.0              |
| 0.1988        | 22.1429 | 310  | 0.1256          | 0.9990   | 1.0           | 1.0              |
| 0.1294        | 22.8571 | 320  | 0.1190          | 0.9990   | 1.0           | 1.0              |
| 0.1174        | 23.5714 | 330  | 0.1185          | 0.9990   | 1.0           | 1.0              |
| 0.1287        | 24.2857 | 340  | 0.1251          | 0.9990   | 1.0           | 1.0              |
| 0.1322        | 25.0    | 350  | 0.1308          | 0.9990   | 1.0           | 1.0              |
| 0.1667        | 25.7143 | 360  | 0.1215          | 0.9990   | 1.0           | 1.0              |
| 0.1095        | 26.4286 | 370  | 0.1226          | 0.9990   | 1.0           | 1.0              |
| 0.1992        | 27.1429 | 380  | 0.1331          | 0.9990   | 1.0           | 1.0              |
| 0.1987        | 27.8571 | 390  | 0.1174          | 0.9990   | 1.0           | 1.0              |
| 0.1587        | 28.5714 | 400  | 0.1162          | 0.9990   | 1.0           | 1.0              |
| 0.1043        | 29.2857 | 410  | 0.1161          | 0.9990   | 1.0           | 1.0              |
| 0.1073        | 30.0    | 420  | 0.1112          | 0.9990   | 1.0           | 1.0              |
| 0.14          | 30.7143 | 430  | 0.1279          | 0.9990   | 1.0           | 1.0              |
| 0.1183        | 31.4286 | 440  | 0.1361          | 0.9990   | 1.0           | 1.0              |
| 0.1096        | 32.1429 | 450  | 0.1430          | 0.9990   | 1.0           | 1.0              |
| 0.0957        | 32.8571 | 460  | 0.1397          | 0.9990   | 1.0           | 1.0              |
| 0.1605        | 33.5714 | 470  | 0.1436          | 0.9990   | 1.0           | 1.0              |
| 0.0837        | 34.2857 | 480  | 0.1163          | 0.9990   | 1.0           | 1.0              |
| 0.1032        | 35.0    | 490  | 0.1223          | 0.9990   | 1.0           | 1.0              |
| 0.1815        | 35.7143 | 500  | 0.0829          | 0.9990   | 1.0           | 1.0              |
| 0.0762        | 36.4286 | 510  | 0.1128          | 0.9990   | 1.0           | 1.0              |
| 0.0754        | 37.1429 | 520  | 0.1676          | 0.9990   | 1.0           | 1.0              |
| 0.0883        | 37.8571 | 530  | 0.1639          | 0.9990   | 1.0           | 1.0              |
| 0.0721        | 38.5714 | 540  | 0.1843          | 0.9990   | 1.0           | 1.0              |
| 0.0703        | 39.2857 | 550  | 0.1493          | 0.9990   | 1.0           | 1.0              |
| 0.0766        | 40.0    | 560  | 0.1616          | 0.9990   | 1.0           | 1.0              |
| 0.0636        | 40.7143 | 570  | 0.1292          | 0.9990   | 1.0           | 1.0              |
| 0.0771        | 41.4286 | 580  | 0.1087          | 0.9990   | 1.0           | 1.0              |
| 0.1019        | 42.1429 | 590  | 0.1540          | 0.9990   | 1.0           | 1.0              |
| 0.0734        | 42.8571 | 600  | 0.1639          | 0.9990   | 1.0           | 1.0              |
| 0.0504        | 43.5714 | 610  | 0.1544          | 0.9990   | 1.0           | 1.0              |
| 0.0606        | 44.2857 | 620  | 0.1403          | 0.9990   | 1.0           | 1.0              |
| 0.0925        | 45.0    | 630  | 0.1664          | 0.9990   | 1.0           | 1.0              |
| 0.0584        | 45.7143 | 640  | 0.1589          | 0.9990   | 1.0           | 1.0              |
| 0.0662        | 46.4286 | 650  | 0.1696          | 0.9990   | 1.0           | 1.0              |
| 0.0537        | 47.1429 | 660  | 0.1487          | 0.9990   | 1.0           | 1.0              |
| 0.0772        | 47.8571 | 670  | 0.1688          | 0.9990   | 1.0           | 1.0              |
| 0.0529        | 48.5714 | 680  | 0.1637          | 0.9990   | 1.0           | 1.0              |
| 0.0538        | 49.2857 | 690  | 0.1573          | 0.9990   | 1.0           | 1.0              |
| 0.045         | 50.0    | 700  | 0.1661          | 0.9990   | 1.0           | 1.0              |
| 0.0588        | 50.7143 | 710  | 0.1824          | 0.9990   | 1.0           | 1.0              |
| 0.0482        | 51.4286 | 720  | 0.1653          | 0.9990   | 1.0           | 1.0              |
| 0.0811        | 52.1429 | 730  | 0.1579          | 0.9990   | 1.0           | 1.0              |
| -0.0544       | 52.8571 | 740  | 0.1355          | 0.9990   | 1.0           | 1.0              |
| 0.0463        | 53.5714 | 750  | 0.1514          | 0.9990   | 1.0           | 1.0              |
| 0.0465        | 54.2857 | 760  | 0.1259          | 0.9990   | 1.0           | 1.0              |
| 0.0798        | 55.0    | 770  | 0.1504          | 0.9990   | 1.0           | 1.0              |
| -0.042        | 55.7143 | 780  | 0.1638          | 0.9990   | 1.0           | 1.0              |
| -0.2192       | 56.4286 | 790  | 0.1666          | 0.9990   | 1.0           | 1.0              |
| 0.0365        | 57.1429 | 800  | 0.1834          | 0.9990   | 1.0           | 1.0              |
| 0.0765        | 57.8571 | 810  | 0.1456          | 0.9990   | 1.0           | 1.0              |
| 0.0552        | 58.5714 | 820  | 0.1491          | 0.9990   | 1.0           | 1.0              |
| 0.0375        | 59.2857 | 830  | 0.1515          | 0.9990   | 1.0           | 1.0              |
| 0.0499        | 60.0    | 840  | 0.1082          | 0.9990   | 1.0           | 1.0              |
| 0.0787        | 60.7143 | 850  | 0.1422          | 0.9990   | 1.0           | 1.0              |
| 0.0562        | 61.4286 | 860  | 0.1337          | 0.9990   | 1.0           | 1.0              |
| 0.0623        | 62.1429 | 870  | 0.1399          | 0.9990   | 1.0           | 1.0              |
| 0.0966        | 62.8571 | 880  | 0.1412          | 0.9990   | 1.0           | 1.0              |
| 0.0811        | 63.5714 | 890  | 0.1311          | 0.9990   | 1.0           | 1.0              |
| 0.0496        | 64.2857 | 900  | 0.1591          | 0.9990   | 1.0           | 1.0              |
| 0.0447        | 65.0    | 910  | 0.1587          | 0.9990   | 1.0           | 1.0              |
| 0.0345        | 65.7143 | 920  | 0.1637          | 0.9990   | 1.0           | 1.0              |
| 0.0637        | 66.4286 | 930  | 0.1427          | 0.9990   | 1.0           | 1.0              |
| 0.0644        | 67.1429 | 940  | 0.1611          | 0.9990   | 1.0           | 1.0              |
| 0.0779        | 67.8571 | 950  | 0.1566          | 0.9990   | 1.0           | 1.0              |
| 0.0417        | 68.5714 | 960  | 0.1488          | 0.9990   | 1.0           | 1.0              |
| 0.0969        | 69.2857 | 970  | 0.1577          | 0.9990   | 1.0           | 1.0              |
| 0.0452        | 70.0    | 980  | 0.1166          | 0.9990   | 1.0           | 1.0              |
| 0.0373        | 70.7143 | 990  | 0.1429          | 0.9990   | 1.0           | 1.0              |
| 0.0438        | 71.4286 | 1000 | 0.1425          | 0.9990   | 1.0           | 1.0              |
| 0.0606        | 72.1429 | 1010 | 0.1238          | 0.9990   | 1.0           | 1.0              |
| 0.0389        | 72.8571 | 1020 | 0.1284          | 0.9990   | 1.0           | 1.0              |
| 0.0402        | 73.5714 | 1030 | 0.1350          | 0.9990   | 1.0           | 1.0              |
| 0.0349        | 74.2857 | 1040 | 0.1583          | 0.9990   | 1.0           | 1.0              |
| 0.031         | 75.0    | 1050 | 0.1563          | 0.9990   | 1.0           | 1.0              |
| 0.0501        | 75.7143 | 1060 | 0.1501          | 0.9990   | 1.0           | 1.0              |
| 0.0412        | 76.4286 | 1070 | 0.1417          | 0.9990   | 1.0           | 1.0              |
| 0.0532        | 77.1429 | 1080 | 0.1456          | 0.9990   | 1.0           | 1.0              |
| 0.0378        | 77.8571 | 1090 | 0.1059          | 0.9990   | 1.0           | 1.0              |
| -0.3927       | 78.5714 | 1100 | 0.1200          | 0.9990   | 1.0           | 1.0              |
| 0.0499        | 79.2857 | 1110 | 0.1396          | 0.9990   | 1.0           | 1.0              |
| 0.0501        | 80.0    | 1120 | 0.1277          | 0.9990   | 1.0           | 1.0              |
| 0.0408        | 80.7143 | 1130 | 0.1494          | 0.9990   | 1.0           | 1.0              |
| 0.0369        | 81.4286 | 1140 | 0.1394          | 0.9990   | 1.0           | 1.0              |
| 0.0014        | 82.1429 | 1150 | 0.1306          | 0.9990   | 1.0           | 1.0              |
| 0.0359        | 82.8571 | 1160 | 0.1557          | 0.9990   | 1.0           | 1.0              |
| -0.4227       | 83.5714 | 1170 | 0.1380          | 0.9990   | 1.0           | 1.0              |
| 0.0307        | 84.2857 | 1180 | 0.1351          | 0.9990   | 1.0           | 1.0              |
| 0.0433        | 85.0    | 1190 | 0.1379          | 0.9990   | 1.0           | 1.0              |
| 0.0407        | 85.7143 | 1200 | 0.1346          | 0.9990   | 1.0           | 1.0              |
| 0.0247        | 86.4286 | 1210 | 0.1572          | 0.9990   | 1.0           | 1.0              |
| 0.0498        | 87.1429 | 1220 | 0.1398          | 0.9990   | 1.0           | 1.0              |
| 0.0399        | 87.8571 | 1230 | 0.1261          | 0.9990   | 1.0           | 1.0              |
| 0.0354        | 88.5714 | 1240 | 0.0936          | 0.9990   | 1.0           | 1.0              |
| 0.0336        | 89.2857 | 1250 | 0.1343          | 0.9990   | 1.0           | 1.0              |
| 0.0291        | 90.0    | 1260 | 0.1410          | 0.9990   | 1.0           | 1.0              |
| 0.0379        | 90.7143 | 1270 | 0.1520          | 0.9990   | 1.0           | 1.0              |
| 0.0331        | 91.4286 | 1280 | 0.1490          | 0.9990   | 1.0           | 1.0              |
| 0.034         | 92.1429 | 1290 | 0.1449          | 0.9990   | 1.0           | 1.0              |
| 0.0315        | 92.8571 | 1300 | 0.1447          | 0.9990   | 1.0           | 1.0              |
| 0.0474        | 93.5714 | 1310 | 0.0865          | 0.9990   | 1.0           | 1.0              |
| 0.0295        | 94.2857 | 1320 | 0.1292          | 0.9990   | 1.0           | 1.0              |
| 0.0347        | 95.0    | 1330 | 0.1097          | 0.9990   | 1.0           | 1.0              |
| 0.0315        | 95.7143 | 1340 | 0.1264          | 0.9990   | 1.0           | 1.0              |
| 0.0427        | 96.4286 | 1350 | 0.1458          | 0.9990   | 1.0           | 1.0              |
| 0.0072        | 97.1429 | 1360 | 0.1381          | 0.9990   | 1.0           | 1.0              |
| 0.0481        | 97.8571 | 1370 | 0.1120          | 0.9990   | 1.0           | 1.0              |
| 0.0312        | 98.5714 | 1380 | 0.1331          | 0.9990   | 1.0           | 1.0              |
| 0.0617        | 99.2857 | 1390 | 0.1368          | 0.9990   | 1.0           | 1.0              |
| -0.4803       | 100.0   | 1400 | 0.0968          | 0.9990   | 1.0           | 1.0              |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1