sharpenb's picture
39cc8a54a14ae9b4e748f6ac9a8b1e12a583b33fd4986c2ac28a8696e5e2c93a
2ddbdbe verified
raw
history blame
66.6 kB
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
from transformers.modeling_outputs import (
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.utils import ModelOutput, logging
from .configuration_llama_moe import LlamaMoEConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlamaMoEConfig"
@dataclass
class CalculatorOutput(ModelOutput):
hidden_states: Optional[torch.FloatTensor] = None
num_dropped_tokens: Optional[int] = None
@dataclass
class BaseMoEModelOutputWithPast(ModelOutput):
"""
Args:
num_dropped_tokens: layer idx to the number of dropped tokens
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
balance_loss: Optional[float] = None
num_dropped_tokens: Optional[Tuple[torch.Tensor]] = None
gate_load: Optional[Tuple[list]] = None
gate_importance: Optional[Tuple[list]] = None
@dataclass
class MoECausalLMOutputWithPast(CausalLMOutputWithPast):
balance_loss: Optional[float] = None
num_dropped_tokens: Optional[Tuple[int]] = None
gate_load: Optional[Tuple[list[torch.Tensor]]] = None
gate_importance: Optional[Tuple[list[torch.Tensor]]] = None
@dataclass
class MoEMlpOutput(ModelOutput):
hidden_states: Optional[torch.FloatTensor] = None
balance_loss: Optional[torch.FloatTensor] = None
num_dropped_tokens: Optional[int] = None
gate_load: Optional[list] = None
gate_importance: Optional[list] = None
def _make_causal_mask(
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
LlamaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class LlamaRotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
)
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq)
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.pretraining_tp = config.pretraining_tp
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
if self.pretraining_tp > 1:
slice = self.intermediate_size // self.pretraining_tp
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.pretraining_tp)], dim=-1)
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
down_proj = [F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.pretraining_tp)]
down_proj = sum(down_proj)
else:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class LlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: LlamaMoEConfig):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.pretraining_tp = config.pretraining_tp
self.max_position_embeddings = config.max_position_embeddings
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self._init_rope()
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
)
elif scaling_type == "dynamic":
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.pretraining_tp
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class TopKBalancedNoisyGate(nn.Module):
def __init__(
self,
input_size,
num_experts,
num_selects,
gate_network="mlp",
use_softmax=True,
use_balance=True,
balance_loss_weight=1e-2,
add_noise=True,
noise_epsilon=1e-2,
):
super(TopKBalancedNoisyGate, self).__init__()
assert num_selects <= num_experts
self.input_size = input_size
self.num_experts = num_experts
self.num_selects = num_selects
self.gate_network_type = gate_network
self.gate_network = self.get_gate_network(gate_network, input_size, num_experts)
self.use_softmax = use_softmax
self.softmax = nn.Softmax(1)
self.use_balance = use_balance
self.balance_loss_weight = balance_loss_weight
# add_noise
self.add_noise = add_noise
self.noise_epsilon = noise_epsilon
self.warned = False
if self.add_noise:
self.weight_noise = nn.Linear(input_size, num_experts, bias=False)
self.weight_noise.weight.data = torch.zeros(
(num_experts, input_size),
requires_grad=True,
device=self.weight_noise.weight.data.device,
dtype=self.weight_noise.weight.data.dtype,
)
self.mean = 0.0
self.std = 1.0
self.normal = Normal(self.mean, self.std)
self.softplus = nn.Softplus()
self.reset_parameters()
def get_gate_network(self, gate_type, input_size, num_experts):
gate_type = gate_type.lower()
if gate_type == "linear":
gate_network = nn.Linear(input_size, num_experts, bias=False)
nn.init.zeros_(gate_network.weight)
elif gate_type == "mlp":
gate_network = torch.nn.Sequential(
torch.nn.Linear(input_size, num_experts, bias=False),
torch.nn.Tanh(),
torch.nn.Linear(num_experts, num_experts, bias=False),
)
else:
raise ValueError(f'Unexpected gate_type: {gate_type}.')
return gate_network
def reset_gate_network(self):
if "gate_network_type" not in vars(self):
raise KeyError(f"{type(self)} does not have a gate network.")
else:
self.gate_network = self.get_gate_network(
self.gate_network_type, self.input_size, self.num_experts
)
def reset_parameters(self):
if self.add_noise:
nn.init.zeros_(self.weight_noise.weight)
# nn.init.zeros_(self.weight_noise)
def cv_squared(self, x, eps=1e-10):
"""The squared coefficient of variation of a sample.
Useful as a loss to encourage a positive distribution to be more uniform.
Epsilons added for numerical stability.
Returns 0 for an empty Tensor.
Args:
x: a `Tensor`.
Returns:
a `Scalar`.s
"""
if x.shape[0] == 1:
return torch.tensor(0.0, device=x.device)
return x.float().var() / (x.float().mean() ** 2 + eps)
def forward(self, x):
logits_gate = self.gate_network(x)
if self.training and self.add_noise:
noise_mm = self.weight_noise(x)
noise_control = self.softplus(noise_mm) + self.noise_epsilon
logits_noise = torch.randn_like(logits_gate) * noise_control
logits = logits_gate + logits_noise
else:
logits = logits_gate
top_logits, top_indices = logits.topk(min(self.num_selects + 1, self.num_experts), dim=1) # 选择并排序前k+1个权重
top_k_logits = top_logits[:, :self.num_selects]
top_k_indices = top_indices[:, :self.num_selects]
top_k_scores = self.softmax(top_k_logits.to(torch.float32)) if self.use_softmax else top_k_logits
top_k_scores = top_k_scores.to(logits.dtype)
zeros = torch.zeros_like(logits, requires_grad=True, device=logits.device)
scores_filtered = zeros.scatter(dim=1, index=top_k_indices, src=top_k_scores) # shape(batch_size, num_experts)
importance = scores_filtered.sum(0) # shape(num_experts)
if self.training:
if self.add_noise and self.num_selects != self.num_experts:
batch_size = top_logits.size(0)
m = top_logits.size(1)
top_values_flat = top_logits.flatten()
threshold_positions_if_in = torch.arange(batch_size, device=x.device) * m + self.num_selects
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
is_in = torch.gt(logits_noise, threshold_if_in)
threshold_positions_if_out = threshold_positions_if_in - 1
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_out), 1)
# is each value currently in the top k.
prob_if_in = self.normal.cdf((logits_gate - threshold_if_in) / noise_control)
prob_if_out = self.normal.cdf((logits_gate - threshold_if_out) / noise_control)
prob = torch.where(is_in, prob_if_in, prob_if_out)
load = prob.sum(0)
else:
load = (scores_filtered > 0).sum(0)
if not self.add_noise and not self.warned:
warnings.warn('Gradient-trackable implementation for load calculation is only available when "add_noise=True". '
'Training without noise will block the gradient from "load" path and lead to inconsistency in optimization objectives.')
self.warned = True
else:
load = (scores_filtered > 0).sum(0)
if self.use_balance:
balance_loss = self.cv_squared(importance) + self.cv_squared(load)
balance_loss *= self.balance_loss_weight
else:
balance_loss = torch.tensor(-100.0, device=x.device)
return {
"topK_indices": top_k_indices,
"topK_scores": top_k_scores,
"balance_loss": balance_loss,
"load": load,
"importance": importance,
}
class LinearGLUExperts(nn.Module):
"""
Modified from transformers.models.llama.modeling_llama.LlamaMLP
"""
__constants__ = [
"bias",
"in_features",
"hidden_features",
"out_features",
"hidden_act",
"num_experts",
"size_experts",
]
def __init__(
self,
in_features,
hidden_features,
out_features,
hidden_act,
num_experts,
size_experts=None,
bias=True,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super(LinearGLUExperts, self).__init__()
self.in_features = in_features
self.hidden_features = hidden_features
self.out_features = out_features
self.hidden_act = hidden_act
self.num_experts = num_experts
if size_experts is None:
# all experts share the same number of hidden neurons
assert hidden_features % num_experts == 0
size_per_expert = hidden_features // num_experts
size_experts = [size_per_expert for _ in range(num_experts)]
else:
# use specified expert sizes
assert (
len(size_experts) == num_experts
and sum(size_experts) == hidden_features
)
self.size_experts = size_experts
self.act_fn = ACT2FN[hidden_act]
self.weight_gate = nn.ParameterList()
self.weight_up = nn.ParameterList()
self.weight_down = nn.ParameterList()
for i in range(num_experts):
# this matrix will be transposed when performing linear forwarding
this_expert_weight_gate = nn.Parameter(
torch.empty((size_experts[i], in_features), **factory_kwargs)
)
# this matrix will be transposed when performing linear forwarding
this_expert_weight_up = nn.Parameter(
torch.empty((size_experts[i], in_features), **factory_kwargs)
)
# this matrix will be transposed when performing linear forwarding
this_expert_weight_down = nn.Parameter(
torch.empty((out_features, size_experts[i]), **factory_kwargs)
)
self.weight_gate.append(this_expert_weight_gate)
self.weight_up.append(this_expert_weight_up)
self.weight_down.append(this_expert_weight_down)
if bias:
self.bias_gate = nn.ParameterList()
self.bias_up = nn.ParameterList()
self.bias_down = nn.ParameterList()
for i in range(num_experts):
this_expert_bias_gate = nn.Parameter(
torch.empty((size_experts[i],), **factory_kwargs)
)
this_expert_bias_up = nn.Parameter(
torch.empty((size_experts[i],), **factory_kwargs)
)
this_expert_bias_down = nn.Parameter(
torch.empty((out_features,), **factory_kwargs)
)
self.bias_gate.append(this_expert_bias_gate)
self.bias_up.append(this_expert_bias_up)
self.bias_down.append(this_expert_bias_down)
else:
self.register_parameter("bias_gate", None)
self.register_parameter("bias_up", None)
self.register_parameter("bias_down", None)
self.reset_parameters()
def reset_parameters(self):
for i in range(self.num_experts):
nn.init.kaiming_uniform_(self.weight_gate[i], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.weight_up[i], a=math.sqrt(5))
nn.init.kaiming_uniform_(self.weight_down[i], a=math.sqrt(5))
if self.bias_gate is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_gate[i])
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias_gate[i], -bound, bound)
if self.bias_up is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_up[i])
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias_up[i], -bound, bound)
if self.bias_down is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight_down[i])
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias_down[i], -bound, bound)
def forward(self, input, i):
gate = self.act_fn(
F.linear(
input,
self.weight_gate[i],
self.bias_gate[i] if self.bias_gate is not None else None,
)
)
up = F.linear(
input,
self.weight_up[i],
self.bias_up[i] if self.bias_up is not None else None,
)
down = F.linear(
gate * up,
self.weight_down[i],
self.bias_down[i] if self.bias_down is not None else None,
)
return down
def extra_repr(self):
return (
"in_features={}, hidden_features={}, out_features={}, hidden_act={},"
" num_experts={}, size_experts={}, bias={}".format(
self.in_features,
self.hidden_features,
self.out_features,
self.hidden_act,
self.num_experts,
self.size_experts,
self.bias_gate is not None,
)
)
class UniversalCalculator(nn.Module):
def __init__(
self,
experts: LinearGLUExperts,
multiply_gate_scores=True,
score_scale_factor=1.0,
add_weight_norm: bool = False,
):
super(UniversalCalculator, self).__init__()
self.experts = experts
# TODO (zhutong): use vmap to boost the training efficiency
# self.experts_vmap = torch.vmap(self.experts)
self.multiply_gate_scores = multiply_gate_scores
self.score_scale_factor = score_scale_factor
self.num_experts = experts.num_experts
self.mlp_norm = None
if multiply_gate_scores and add_weight_norm:
raise NotImplementedError
def reset_experts(self):
self.experts.reset_parameters()
def forward(
self, x, topK_indices, topK_scores, expert_batch_size=None, **kwargs
) -> CalculatorOutput:
batch_size = topK_indices.size(0) # topK_indices: (bsz*seq_len, num_selects)
num_selects = topK_indices.size(1)
topK_indices = topK_indices.flatten() # shape(batch_size*num_selects)
topK_scores = topK_scores.flatten() # shape(batch_size*num_selects)
batch_indices = torch.arange(
batch_size, device=topK_scores.device
).repeat_interleave(num_selects)
_, index_sorted_topK_indices = topK_indices.sort(0)
sorted_topK_scores = topK_scores.index_select(0, index_sorted_topK_indices)
sorted_batch_indices = batch_indices.index_select(0, index_sorted_topK_indices)
if expert_batch_size is None:
expert_batch_size = topK_indices.bincount(
minlength=self.num_experts
).tolist()
sorted_x = x.index_select(0, sorted_batch_indices)
split_x = torch.split(sorted_x, expert_batch_size, dim=0)
expert_outputs = [
self.experts(split_x[i], i)
for i in range(self.num_experts)
if split_x[i].shape[0] > 0
]
# (bsz*seq_len*num_selects, hidden_size)
cat_expert_outputs = torch.cat(expert_outputs, 0)
output_dim = cat_expert_outputs.size(1)
if self.multiply_gate_scores:
if self.mlp_norm is None:
cat_expert_outputs = torch.mul(
cat_expert_outputs,
sorted_topK_scores.reshape(-1, 1) * self.score_scale_factor,
)
# cat_expert_outputs = torch.mul(cat_expert_outputs, sorted_topK_scores.reshape(-1, 1) * 1.0)
else:
cat_expert_outputs = torch.mul(
cat_expert_outputs, sorted_topK_scores.reshape(-1, 1)
)
cat_expert_outputs = self.mlp_norm(cat_expert_outputs)
zeros = torch.zeros(
(batch_size, output_dim),
device=cat_expert_outputs.device,
dtype=cat_expert_outputs.dtype,
)
y = zeros.index_add(0, sorted_batch_indices, cat_expert_outputs)
return CalculatorOutput(hidden_states=y, num_dropped_tokens=torch.tensor(-1.0))
class BaseMoELayer(nn.Module):
def __init__(self):
super(BaseMoELayer, self).__init__()
self.gate: TopKBalancedNoisyGate
self.calculator: UniversalCalculator
def _create_gate(self, **kwargs):
self.gate_type = kwargs.get("gate_type", "TopKBalancedNoisyGate")
if self.gate_type == "TopKBalancedNoisyGate": # noisy gate
self.gate = TopKBalancedNoisyGate(
self.input_size,
self.num_experts,
self.num_selects,
gate_network=kwargs.get("gate_network", "mlp"),
use_softmax=kwargs.get("gate_use_softmax", True),
use_balance=kwargs.get("gate_use_balance", True),
balance_loss_weight=kwargs.get("gate_balance_loss_weight", 1e-2),
add_noise=kwargs.get("gate_add_noise", True),
noise_epsilon=kwargs.get("gate_noise_epsilon", 1e-2),
)
else:
raise NotImplementedError
def _create_calculator(self, experts, **kwargs):
self.calculator_type = kwargs.get("calculator_type", "UniversalCalculator")
if self.calculator_type == "UniversalCalculator": # top K calculator
self.calculator = UniversalCalculator(
experts,
multiply_gate_scores=kwargs.get("multiply_gate_scores", True),
score_scale_factor=kwargs.get("score_scale_factor", 1.0),
add_weight_norm=kwargs.get("add_weight_norm", False),
)
else:
raise NotImplementedError
def forward(self, x) -> MoEMlpOutput:
original_shape = x.shape[:-1]
x = x.reshape(-1, self.input_size)
gate_outputs: dict = self.gate(x)
calc_outs: CalculatorOutput = self.calculator(x, **gate_outputs)
y = calc_outs.hidden_states
y = y.reshape(original_shape + (self.output_size,))
return MoEMlpOutput(
hidden_states=y,
balance_loss=gate_outputs.get("balance_loss"),
num_dropped_tokens=calc_outs.num_dropped_tokens,
gate_load=gate_outputs.get("load", torch.tensor(-1)),
gate_importance=gate_outputs.get("importance", torch.tensor(-1)),
)
def set_num_selects(self, num_selects):
if "num_selects" not in vars(self.gate):
raise KeyError(f'{self.gate_type} does not have a key named "num_selects".')
elif num_selects > self.gate.num_experts:
raise ValueError(
'The value of "num_selects" must satisfy "num_selects <= num_experts"!'
)
elif self.gate_type in ("SwitchBalancedGate",):
raise ValueError(
f"{self.gate_type} doesn't support manually setting num_selects."
)
else:
self.num_selects = num_selects
self.gate.num_selects = num_selects
def set_gate_use_softmax(self, use_softmax):
if "use_softmax" not in vars(self.gate):
raise KeyError(f'{self.gate_type} does not have a key named "use_softmax".')
else:
self.gate.use_softmax = use_softmax
def set_gate_use_balance(self, use_balance):
if "use_balance" not in vars(self.gate):
raise KeyError(f'{self.gate_type} does not have a key named "use_balance".')
else:
self.gate.use_balance = use_balance
def set_gate_balance_loss_weight(self, balance_loss_weight):
if "balance_loss_weight" not in vars(self.gate):
raise KeyError(
f'{self.gate_type} does not have a key named "balance_loss_weight".'
)
else:
self.gate.balance_loss_weight = balance_loss_weight
def set_gate_add_noise(self, add_noise):
if "add_noise" not in vars(self.gate):
raise KeyError(f'{self.gate_type} does not have a key named "add_noise".')
else:
self.gate.add_noise = add_noise
def set_gate_noise_epsilon(self, noise_epsilon):
if "noise_epsilon" not in vars(self.gate):
raise KeyError(
f'{self.gate_type} does not have a key named "noise_epsilon".'
)
else:
self.gate.noise_epsilon = noise_epsilon
def set_calculator_multiply_gate_scores(self, multiply_gate_scores):
if "multiply_gate_scores" not in vars(self.calculator):
raise KeyError(
f'{self.gate_type} does not have a key named "multiply_gate_scores".'
)
else:
self.calculator.multiply_gate_scores = multiply_gate_scores
def set_calculator_score_scale_factor(self, score_scale_factor):
if "score_scale_factor" not in vars(self.calculator):
raise KeyError(
f'{self.gate_type} does not have a key named "score_scale_factor".'
)
else:
self.calculator.score_scale_factor = score_scale_factor
def set_calculator_drop_tokens(self, drop_tokens):
if "drop_tokens" not in vars(self.calculator):
raise KeyError(f'{self.gate_type} does not have a key named "drop_tokens".')
elif (
drop_tokens
and self.calculator.dropped_padding != "zero"
and self.input_size != self.output_size
):
warnings.warn(
'Setting "drop_tokens=True" without zero dropped padding when "input_size != output_size" will cause error!'
)
else:
self.calculator.drop_tokens = drop_tokens
def set_calculator_dropped_padding(self, dropped_padding):
if "dropped_padding" not in vars(self.calculator):
raise KeyError(
f'{self.gate_type} does not have a key named "dropped_padding".'
)
elif dropped_padding not in self.calculator.available_dropped_padding_choices:
raise ValueError(
f"'dropped_padding' type not available! (available choices: {self.calculator.available_dropped_padding_choices})"
)
elif (
self.calculator.drop_tokens
and dropped_padding != "zero"
and self.input_size != self.output_size
):
warnings.warn(
f'Setting "dropped_padding={dropped_padding}" with "drop_tokens=True" when "input_size != output_size" will cause error!'
)
else:
self.calculator.dropped_padding = dropped_padding
def set_calculator_capacity_factor(self, capacity_factor):
if "capacity_factor" not in vars(self.calculator):
raise KeyError(
f'{self.gate_type} does not have a key named "capacity_factor".'
)
else:
self.calculator.capacity_factor = capacity_factor
def reset_gate_network(self):
self.gate.reset_gate_network()
def reset_experts(self):
self.calculator.reset_experts()
class LinearGLUMoELayer(BaseMoELayer):
def __init__(
self,
input_size,
hidden_size,
output_size,
hidden_act,
num_experts,
num_selects,
size_experts=None,
bias=True,
**kwargs,
):
super(LinearGLUMoELayer, self).__init__()
assert num_selects <= num_experts
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.hidden_act = hidden_act
self.num_experts = num_experts
self.num_selects = num_selects
self.size_experts = size_experts
self.bias = bias
experts = LinearGLUExperts(
input_size,
hidden_size,
output_size,
hidden_act,
num_experts,
size_experts=size_experts,
bias=bias,
)
self._create_gate(**kwargs)
self._create_calculator(experts, **kwargs)
class LlamaMoEDecoderLayer(nn.Module):
def __init__(self, config: LlamaMoEConfig, layer_index):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LlamaAttention(config=config)
self.mlp = LlamaMLP(config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
gating_config = {
# all gates
"gate_type": config.gate_type,
"gate_network": config.gate_network,
"gate_use_softmax": config.gate_use_softmax,
"gate_use_balance": config.gate_use_balance,
"gate_balance_loss_weight": config.gate_balance_loss_weight,
"gate_add_noise": config.gate_add_noise,
# TopKBalancedNoisyGate
"gate_noise_epsilon": config.gate_noise_epsilon,
}
calculator_config = {
# all calculators
"calculator_type": config.calculator_type,
"multiply_gate_scores": config.multiply_gate_scores,
"score_scale_factor": (
config.score_scale_factor[layer_index]
if isinstance(config.score_scale_factor, list)
else config.score_scale_factor
),
"add_weight_norm": config.add_weight_norm,
# SwitchDropTokenCalculator
"drop_tokens": config.drop_tokens,
"dropped_padding": config.dropped_padding,
"capacity_factor": config.capacity_factor,
}
self.mlp = LinearGLUMoELayer(
input_size=self.hidden_size,
hidden_size=config.intermediate_size,
output_size=self.hidden_size,
hidden_act=config.hidden_act,
num_experts=config.num_experts,
num_selects=config.num_selects,
size_experts=(
config.size_experts[layer_index]
if config.size_experts is not None
else None
),
bias=False,
**gating_config,
**calculator_config,
)
def forward(
self,
hidden_states,
attention_mask=None,
position_ids=None,
past_key_value=None,
output_attentions=False,
use_cache=False,
) -> tuple:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
mlp_outs: MoEMlpOutput = self.mlp(hidden_states)
hidden_states = residual + mlp_outs.hidden_states
outputs = (
hidden_states,
mlp_outs.balance_loss,
mlp_outs.num_dropped_tokens,
mlp_outs.gate_load,
mlp_outs.gate_importance,
)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
def set_moe_num_selects(self, num_selects):
self.mlp.set_num_selects(num_selects)
def set_moe_gate_use_softmax(self, use_softmax):
self.mlp.set_gate_use_softmax(use_softmax)
def set_moe_gate_use_balance(self, use_balance):
self.mlp.set_gate_use_balance(use_balance)
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
self.mlp.set_gate_balance_loss_weight(balance_loss_weight)
def set_moe_gate_add_noise(self, add_noise):
self.mlp.set_gate_add_noise(add_noise)
def set_moe_gate_noise_epsilon(self, noise_epsilon):
self.mlp.set_gate_noise_epsilon(noise_epsilon)
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
self.mlp.set_calculator_multiply_gate_scores(multiply_gate_scores)
def set_moe_calculator_score_scale_factor(self, score_scale_factor):
self.mlp.set_calculator_score_scale_factor(score_scale_factor)
def set_moe_calculator_drop_tokens(self, drop_tokens):
self.mlp.set_calculator_drop_tokens(drop_tokens)
def set_moe_calculator_dropped_padding(self, dropped_padding):
self.mlp.set_calculator_dropped_padding(dropped_padding)
def set_moe_calculator_capacity_factor(self, capacity_factor):
self.mlp.set_calculator_capacity_factor(capacity_factor)
def reset_gate_network(self):
self.mlp.reset_gate_network()
def reset_experts(self):
self.mlp.reset_experts()
class LlamaMoEPreTrainedModel(PreTrainedModel):
config_class = LlamaMoEConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlamaMoEDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, LlamaMoEModel):
module.gradient_checkpointing = value
class LlamaMoEModel(LlamaMoEPreTrainedModel):
def __init__(self, config: LlamaMoEConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[LlamaMoEDecoderLayer(config, i) for i in range(config.num_hidden_layers)]
)
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at"
" the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past),
dtype=torch.bool,
device=inputs_embeds.device,
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
hidden_states = inputs_embeds
balance_loss = 0.0
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing."
" Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
num_dropped_tokens = ()
gate_load = ()
gate_importance = ()
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs: tuple = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
None,
)
else:
layer_outputs: tuple = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if layer_outputs[1] is not None:
balance_loss += layer_outputs[1]
if use_cache:
next_decoder_cache += (layer_outputs[6 if output_attentions else 5],)
if output_attentions:
all_self_attns += (layer_outputs[5],)
num_dropped_tokens += (layer_outputs[2],)
gate_load += (layer_outputs[3],)
gate_importance += (layer_outputs[4],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseMoEModelOutputWithPast(
last_hidden_state=hidden_states,
balance_loss=balance_loss,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
num_dropped_tokens=num_dropped_tokens,
gate_load=gate_load,
gate_importance=gate_importance,
)
def update_config(self):
self.config.vocab_size = self.config.vocab_size
self.config.max_position_embeddings = self.config.max_position_embeddings
# ↓↓↓↓↓↓↓↓↓↓↓↓ changed here ↓↓↓↓↓↓↓↓↓↓↓↓ #
self.config.hidden_size = self.layers[0].mlp.input_size
self.config.intermediate_size = self.layers[0].mlp.hidden_size
self.config.num_hidden_layers = len(self.layers)
self.config.num_attention_heads = self.layers[0].self_attn.num_heads
self.config.hidden_act = self.layers[0].mlp.hidden_act
# ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ #
self.config.initializer_range = self.config.initializer_range
self.config.rms_norm_eps = self.config.rms_norm_eps
self.config.pretraining_tp = self.config.pretraining_tp
self.config.use_cache = self.config.use_cache
self.config.rope_scaling = self.config.rope_scaling
self.config._rope_scaling_validation()
self.config.num_experts = self.layers[0].mlp.num_experts
self.config.num_selects = self.layers[0].mlp.num_selects
self.config.size_experts = [
self.layers[i].mlp.calculator.experts.size_experts
for i in range(self.config.num_hidden_layers)
]
self.config.gate_type = vars(self.layers[0].mlp).get(
"gate_type", "TopKBalancedNoisyGate"
)
self.config.gate_network = vars(self.layers[0].mlp.gate).get(
"gate_network_type", "mlp"
)
self.config.gate_use_softmax = vars(self.layers[0].mlp.gate).get(
"use_softmax", True
)
self.config.gate_use_balance = vars(self.layers[0].mlp.gate).get(
"use_balance", True
)
self.config.gate_balance_loss_weight = vars(self.layers[0].mlp.gate).get(
"balance_loss_weight", 1e-2
)
self.config.gate_add_noise = vars(self.layers[0].mlp.gate).get(
"add_noise", True
)
self.config.gate_noise_epsilon = vars(self.layers[0].mlp.gate).get(
"noise_epsilon", 1e-2
)
self.config.calculator_type = vars(self.layers[0].mlp).get(
"calculator_type", "UniversalCalculator"
)
self.config.multiply_gate_scores = vars(self.layers[0].mlp.calculator).get(
"multiply_gate_scores", True
)
self.config.score_scale_factor = [
vars(self.layers[i].mlp.calculator).get("score_scale_factor", 1.0)
for i in range(self.config.num_hidden_layers)
]
self.config.drop_tokens = vars(self.layers[0].mlp.calculator).get(
"drop_tokens", True
)
self.config.dropped_padding = vars(self.layers[0].mlp.calculator).get(
"dropped_padding", "zero"
)
self.config.capacity_factor = vars(self.layers[0].mlp.calculator).get(
"capacity_factor", 1.25
)
def set_moe_num_selects(self, num_selects):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_num_selects(num_selects)
def set_moe_gate_use_softmax(self, use_softmax):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_use_softmax(use_softmax)
def set_moe_gate_use_balance(self, use_balance):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_use_balance(use_balance)
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_balance_loss_weight(balance_loss_weight)
def set_moe_gate_add_noise(self, add_noise):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_add_noise(add_noise)
def set_moe_gate_noise_epsilon(self, noise_epsilon):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_gate_noise_epsilon(noise_epsilon)
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
def set_moe_calculator_score_scale_factor(
self, score_scale_factor, layer_index=None
):
if layer_index is None:
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_score_scale_factor(score_scale_factor)
else:
self.layers[layer_index].set_moe_calculator_score_scale_factor(
score_scale_factor
)
def set_moe_calculator_drop_tokens(self, drop_tokens):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_drop_tokens(drop_tokens)
def set_moe_calculator_dropped_padding(self, dropped_padding):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_dropped_padding(dropped_padding)
def set_moe_calculator_capacity_factor(self, capacity_factor):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.set_moe_calculator_capacity_factor(capacity_factor)
def reset_gate_network(self):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.reset_gate_network()
def reset_experts(self):
for idx, decoder_layer in enumerate(self.layers):
decoder_layer.reset_experts()
class LlamaMoEForCausalLM(LlamaMoEPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = LlamaMoEModel(config)
self.pretraining_tp = config.pretraining_tp
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
past_key_values=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
**kwargs,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseMoEModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs.last_hidden_state
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if outputs.balance_loss is not None and outputs.balance_loss > 0:
loss += outputs.balance_loss
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MoECausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
num_dropped_tokens=outputs.num_dropped_tokens,
balance_loss=outputs.balance_loss,
gate_load=outputs.gate_load,
gate_importance=outputs.gate_importance,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
def update_config(self):
self.model.update_config()
def set_moe_num_selects(self, num_selects):
self.model.set_moe_num_selects(num_selects)
def set_moe_gate_use_softmax(self, use_softmax):
self.model.set_moe_gate_use_softmax(use_softmax)
def set_moe_gate_use_balance(self, use_balance):
self.model.set_moe_gate_use_balance(use_balance)
def set_moe_gate_balance_loss_weight(self, balance_loss_weight):
self.model.set_moe_gate_balance_loss_weight(balance_loss_weight)
def set_moe_gate_add_noise(self, add_noise):
self.model.set_moe_gate_add_noise(add_noise)
def set_moe_gate_noise_epsilon(self, noise_epsilon):
self.model.set_moe_gate_noise_epsilon(noise_epsilon)
def set_moe_calculator_multiply_gate_scores(self, multiply_gate_scores):
self.model.set_moe_calculator_multiply_gate_scores(multiply_gate_scores)
def set_moe_calculator_score_scale_factor(
self, score_scale_factor, layer_index=None
):
self.model.set_moe_calculator_score_scale_factor(
score_scale_factor, layer_index=layer_index
)
def set_moe_calculator_drop_tokens(self, drop_tokens):
self.model.set_moe_calculator_drop_tokens(drop_tokens)
def set_moe_calculator_dropped_padding(self, dropped_padding):
self.model.set_moe_calculator_dropped_padding(dropped_padding)
def set_moe_calculator_capacity_factor(self, capacity_factor):
self.model.set_moe_calculator_capacity_factor(capacity_factor)
def reset_gate_network(self):
self.model.reset_gate_network()
def reset_experts(self):
self.model.reset_experts()