from typing import Dict, List, Optional, Type, Union import torch def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor: if torch.is_autocast_enabled(): if tensor.device.type == "cuda": dtype = torch.get_autocast_gpu_dtype() elif tensor.device.type == "cpu": dtype = torch.get_autocast_cpu_dtype() else: raise NotImplementedError() return tensor.to(dtype=dtype) return tensor class LPLayerNorm(torch.nn.LayerNorm): def __init__( self, normalized_shape: Union[int, List[int], torch.Size], eps: float = 1e-05, elementwise_affine: bool = True, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): super().__init__( normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype, ) def forward(self, x: torch.Tensor) -> torch.Tensor: module_device = x.device downcast_x = _cast_if_autocast_enabled(x) downcast_weight = ( _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight ) downcast_bias = ( _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias ) with torch.autocast(enabled=False, device_type=module_device.type): return torch.nn.functional.layer_norm( downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps, ) def rms_norm( x: torch.Tensor, weight: Optional[torch.Tensor] = None, eps: float = 1e-05 ) -> torch.Tensor: output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) if weight is not None: return output * weight return output class RMSNorm(torch.nn.Module): def __init__( self, normalized_shape: Union[int, List[int], torch.Size], eps: float = 1e-05, weight: bool = True, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, ): super().__init__() self.eps = eps if weight: self.weight = torch.nn.Parameter( torch.ones(normalized_shape, dtype=dtype, device=device) ) else: self.register_parameter("weight", None) def forward(self, x: torch.Tensor) -> torch.Tensor: return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) class LPRMSNorm(RMSNorm): def __init__( self, normalized_shape: Union[int, List[int], torch.Size], eps: float = 1e-05, weight: bool = True, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, ): super().__init__( normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device, ) def forward(self, x: torch.Tensor) -> torch.Tensor: downcast_x = _cast_if_autocast_enabled(x) downcast_weight = ( _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight ) with torch.autocast(enabled=False, device_type=x.device.type): return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype) NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = { "layernorm": torch.nn.LayerNorm, "low_precision_layernorm": LPLayerNorm, "rmsnorm": RMSNorm, "low_precision_rmsnorm": LPRMSNorm, }