sharpenb's picture
Upload folder using huggingface_hub (#1)
a1d0506 verified
"""
Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py
update imports to use 'triton_pre_mlir'
*Experimental* implementation of FlashAttention in Triton.
Tested with triton==2.0.0.dev20221202.
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions
other than 64:
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207
We'll update this implementation with the new Triton backend once this is fixed.
We use the FlashAttention implementation from Phil Tillet a starting point.
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
Changes:
- Implement both causal and non-causal attention.
- Implement both self-attention and cross-attention.
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
- Support attention bias.
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
- Make the backward for d=128 much faster by reducing register spilling.
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
small batch size * nheads.
Caution:
- This is an *experimental* implementation. The forward pass should be quite robust but
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
- This implementation has only been tested on A100.
- If you plan to use headdim other than 64 and 128, you should test for race conditions
(due to the Triton compiler), as done in tests/test_flash_attn.py
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
that there are none left for other head dimensions.
Differences between this Triton version and the CUDA version:
- Triton version doesn't support dropout.
- Triton forward is generally faster than CUDA forward, while Triton backward is
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
than CUDA forward + backward.
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
- Triton version supports attention bias, while CUDA version doesn't.
"""
import math
import torch
import triton_pre_mlir as triton
import triton_pre_mlir.language as tl
@triton.heuristics(
{
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
}
)
@triton.jit
def _fwd_kernel(
Q,
K,
V,
Bias,
Out,
Lse,
TMP,
softmax_scale,
stride_qb,
stride_qh,
stride_qm,
stride_kb,
stride_kh,
stride_kn,
stride_vb,
stride_vh,
stride_vn,
stride_bb,
stride_bh,
stride_bm,
stride_ob,
stride_oh,
stride_om,
nheads,
seqlen_q,
seqlen_k,
seqlen_q_rounded,
headdim,
CACHE_KEY_SEQLEN_Q,
CACHE_KEY_SEQLEN_K,
BIAS_TYPE: tl.constexpr,
IS_CAUSAL: tl.constexpr,
BLOCK_HEADDIM: tl.constexpr,
EVEN_M: tl.constexpr,
EVEN_N: tl.constexpr,
EVEN_HEADDIM: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
):
start_m = tl.program_id(0)
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_HEADDIM)
q_ptrs = (
Q
+ off_b * stride_qb
+ off_h * stride_qh
+ (offs_m[:, None] * stride_qm + offs_d[None, :])
)
k_ptrs = (
K
+ off_b * stride_kb
+ off_h * stride_kh
+ (offs_n[:, None] * stride_kn + offs_d[None, :])
)
v_ptrs = (
V
+ off_b * stride_vb
+ off_h * stride_vh
+ (offs_n[:, None] * stride_vn + offs_d[None, :])
)
if BIAS_TYPE == "vector":
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
elif BIAS_TYPE == "matrix":
b_ptrs = (
Bias
+ off_b * stride_bb
+ off_h * stride_bh
+ (offs_m[:, None] * stride_bm + offs_n[None, :])
)
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
if EVEN_M & EVEN_N:
if EVEN_HEADDIM:
q = tl.load(q_ptrs)
else:
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
elif EVEN_HEADDIM:
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
else:
q = tl.load(
q_ptrs,
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
other=0.0,
)
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
for start_n in range(0, end_n, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
if EVEN_N & EVEN_M:
if EVEN_HEADDIM:
k = tl.load(k_ptrs + start_n * stride_kn)
else:
k = tl.load(
k_ptrs + start_n * stride_kn,
mask=offs_d[None, :] < headdim,
other=0.0,
)
elif EVEN_HEADDIM:
k = tl.load(
k_ptrs + start_n * stride_kn,
mask=(start_n + offs_n)[:, None] < seqlen_k,
other=0.0,
)
else:
k = tl.load(
k_ptrs + start_n * stride_kn,
mask=((start_n + offs_n)[:, None] < seqlen_k)
& (offs_d[None, :] < headdim),
other=0.0,
)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k, trans_b=True)
if not EVEN_N:
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
if IS_CAUSAL:
qk += tl.where(
offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf")
)
if BIAS_TYPE != "none":
if BIAS_TYPE == "vector":
if EVEN_N:
bias = tl.load(b_ptrs + start_n).to(tl.float32)
else:
bias = tl.load(
b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0
).to(tl.float32)
bias = bias[None, :]
elif BIAS_TYPE == "matrix":
if EVEN_M & EVEN_N:
bias = tl.load(b_ptrs + start_n).to(tl.float32)
else:
bias = tl.load(
b_ptrs + start_n,
mask=(offs_m[:, None] < seqlen_q)
& ((start_n + offs_n)[None, :] < seqlen_k),
other=0.0,
).to(tl.float32)
qk = qk * softmax_scale + bias
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
p = tl.exp(qk - m_ij[:, None])
else:
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
p = tl.exp(qk * softmax_scale - m_ij[:, None])
l_ij = tl.sum(p, 1)
acc_o_scale = tl.exp(m_i - m_ij)
tl.store(t_ptrs, acc_o_scale)
acc_o_scale = tl.load(t_ptrs)
acc_o = acc_o * acc_o_scale[:, None]
if EVEN_N & EVEN_M:
if EVEN_HEADDIM:
v = tl.load(v_ptrs + start_n * stride_vn)
else:
v = tl.load(
v_ptrs + start_n * stride_vn,
mask=offs_d[None, :] < headdim,
other=0.0,
)
elif EVEN_HEADDIM:
v = tl.load(
v_ptrs + start_n * stride_vn,
mask=(start_n + offs_n)[:, None] < seqlen_k,
other=0.0,
)
else:
v = tl.load(
v_ptrs + start_n * stride_vn,
mask=((start_n + offs_n)[:, None] < seqlen_k)
& (offs_d[None, :] < headdim),
other=0.0,
)
p = p.to(v.dtype)
acc_o += tl.dot(p, v)
m_i = m_ij
l_i_new = tl.exp(lse_i - m_ij) + l_ij
lse_i = m_ij + tl.log(l_i_new)
o_scale = tl.exp(m_i - lse_i)
tl.store(t_ptrs, o_scale)
o_scale = tl.load(t_ptrs)
acc_o = acc_o * o_scale[:, None]
start_m = tl.program_id(0)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
tl.store(lse_ptrs, lse_i)
offs_d = tl.arange(0, BLOCK_HEADDIM)
out_ptrs = (
Out
+ off_b * stride_ob
+ off_h * stride_oh
+ (offs_m[:, None] * stride_om + offs_d[None, :])
)
if EVEN_M:
if EVEN_HEADDIM:
tl.store(out_ptrs, acc_o)
else:
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
elif EVEN_HEADDIM:
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
else:
tl.store(
out_ptrs,
acc_o,
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
)
@triton.jit
def _bwd_preprocess_do_o_dot(
Out,
DO,
Delta,
stride_ob,
stride_oh,
stride_om,
stride_dob,
stride_doh,
stride_dom,
nheads,
seqlen_q,
seqlen_q_rounded,
headdim,
BLOCK_M: tl.constexpr,
BLOCK_HEADDIM: tl.constexpr,
):
start_m = tl.program_id(0)
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_d = tl.arange(0, BLOCK_HEADDIM)
o = tl.load(
Out
+ off_b * stride_ob
+ off_h * stride_oh
+ offs_m[:, None] * stride_om
+ offs_d[None, :],
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
other=0.0,
).to(tl.float32)
do = tl.load(
DO
+ off_b * stride_dob
+ off_h * stride_doh
+ offs_m[:, None] * stride_dom
+ offs_d[None, :],
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
other=0.0,
).to(tl.float32)
delta = tl.sum(o * do, axis=1)
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
@triton.jit
def _bwd_store_dk_dv(
dk_ptrs,
dv_ptrs,
dk,
dv,
offs_n,
offs_d,
seqlen_k,
headdim,
EVEN_M: tl.constexpr,
EVEN_N: tl.constexpr,
EVEN_HEADDIM: tl.constexpr,
):
if EVEN_N & EVEN_M:
if EVEN_HEADDIM:
tl.store(dv_ptrs, dv)
tl.store(dk_ptrs, dk)
else:
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
elif EVEN_HEADDIM:
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
else:
tl.store(
dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)
)
tl.store(
dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)
)
@triton.jit
def _bwd_kernel_one_col_block(
start_n,
Q,
K,
V,
Bias,
DO,
DQ,
DK,
DV,
LSE,
D,
softmax_scale,
stride_qm,
stride_kn,
stride_vn,
stride_bm,
stride_dom,
stride_dqm,
stride_dkn,
stride_dvn,
seqlen_q,
seqlen_k,
headdim,
ATOMIC_ADD: tl.constexpr,
BIAS_TYPE: tl.constexpr,
IS_CAUSAL: tl.constexpr,
BLOCK_HEADDIM: tl.constexpr,
EVEN_M: tl.constexpr,
EVEN_N: tl.constexpr,
EVEN_HEADDIM: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
):
begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
offs_qm = begin_m + tl.arange(0, BLOCK_M)
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
offs_m = tl.arange(0, BLOCK_M)
offs_d = tl.arange(0, BLOCK_HEADDIM)
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
if BIAS_TYPE == "vector":
b_ptrs = Bias + offs_n
elif BIAS_TYPE == "matrix":
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
if begin_m >= seqlen_q:
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
_bwd_store_dk_dv(
dk_ptrs,
dv_ptrs,
dk,
dv,
offs_n,
offs_d,
seqlen_k,
headdim,
EVEN_M=EVEN_M,
EVEN_N=EVEN_N,
EVEN_HEADDIM=EVEN_HEADDIM,
)
return
if EVEN_N & EVEN_M:
if EVEN_HEADDIM:
k = tl.load(k_ptrs)
v = tl.load(v_ptrs)
else:
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
elif EVEN_HEADDIM:
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
else:
k = tl.load(
k_ptrs,
mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
other=0.0,
)
v = tl.load(
v_ptrs,
mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
other=0.0,
)
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
start_m = tl.multiple_of(start_m, BLOCK_M)
offs_m_curr = start_m + offs_m
if EVEN_M & EVEN_HEADDIM:
q = tl.load(q_ptrs)
elif EVEN_HEADDIM:
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
else:
q = tl.load(
q_ptrs,
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
other=0.0,
)
qk = tl.dot(q, k, trans_b=True)
if not EVEN_N:
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
if IS_CAUSAL:
qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float("-inf"))
if BIAS_TYPE != "none":
tl.debug_barrier()
if BIAS_TYPE == "vector":
if EVEN_N:
bias = tl.load(b_ptrs).to(tl.float32)
else:
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(
tl.float32
)
bias = bias[None, :]
elif BIAS_TYPE == "matrix":
if EVEN_M & EVEN_N:
bias = tl.load(b_ptrs).to(tl.float32)
else:
bias = tl.load(
b_ptrs,
mask=(offs_m_curr[:, None] < seqlen_q)
& (offs_n[None, :] < seqlen_k),
other=0.0,
).to(tl.float32)
qk = qk * softmax_scale + bias
if not EVEN_M & EVEN_HEADDIM:
tl.debug_barrier()
lse_i = tl.load(LSE + offs_m_curr)
if BIAS_TYPE == "none":
p = tl.exp(qk * softmax_scale - lse_i[:, None])
else:
p = tl.exp(qk - lse_i[:, None])
if EVEN_M & EVEN_HEADDIM:
do = tl.load(do_ptrs)
else:
do = tl.load(
do_ptrs,
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
other=0.0,
)
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
if not EVEN_M & EVEN_HEADDIM:
tl.debug_barrier()
dp = tl.dot(do, v, trans_b=True)
if not EVEN_HEADDIM:
tl.debug_barrier()
Di = tl.load(D + offs_m_curr)
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
dk += tl.dot(ds, q, trans_a=True)
if not EVEN_M & EVEN_HEADDIM:
tl.debug_barrier()
if not ATOMIC_ADD:
if EVEN_M & EVEN_HEADDIM:
dq = tl.load(dq_ptrs, eviction_policy="evict_last")
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, eviction_policy="evict_last")
elif EVEN_HEADDIM:
dq = tl.load(
dq_ptrs,
mask=offs_m_curr[:, None] < seqlen_q,
other=0.0,
eviction_policy="evict_last",
)
dq += tl.dot(ds, k)
tl.store(
dq_ptrs,
dq,
mask=offs_m_curr[:, None] < seqlen_q,
eviction_policy="evict_last",
)
else:
dq = tl.load(
dq_ptrs,
mask=(offs_m_curr[:, None] < seqlen_q)
& (offs_d[None, :] < headdim),
other=0.0,
eviction_policy="evict_last",
)
dq += tl.dot(ds, k)
tl.store(
dq_ptrs,
dq,
mask=(offs_m_curr[:, None] < seqlen_q)
& (offs_d[None, :] < headdim),
eviction_policy="evict_last",
)
else:
dq = tl.dot(ds, k)
if EVEN_M & EVEN_HEADDIM:
tl.atomic_add(dq_ptrs, dq)
elif EVEN_HEADDIM:
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
else:
tl.atomic_add(
dq_ptrs,
dq,
mask=(offs_m_curr[:, None] < seqlen_q)
& (offs_d[None, :] < headdim),
)
dq_ptrs += BLOCK_M * stride_dqm
q_ptrs += BLOCK_M * stride_qm
do_ptrs += BLOCK_M * stride_dom
if BIAS_TYPE == "matrix":
b_ptrs += BLOCK_M * stride_bm
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
_bwd_store_dk_dv(
dk_ptrs,
dv_ptrs,
dk,
dv,
offs_n,
offs_d,
seqlen_k,
headdim,
EVEN_M=EVEN_M,
EVEN_N=EVEN_N,
EVEN_HEADDIM=EVEN_HEADDIM,
)
def init_to_zero(name):
return lambda nargs: nargs[name].zero_()
@triton.autotune(
configs=[
triton.Config(
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False},
num_warps=8,
num_stages=1,
pre_hook=init_to_zero("DQ"),
),
triton.Config(
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True},
num_warps=8,
num_stages=1,
pre_hook=init_to_zero("DQ"),
),
],
key=[
"CACHE_KEY_SEQLEN_Q",
"CACHE_KEY_SEQLEN_K",
"BIAS_TYPE",
"IS_CAUSAL",
"BLOCK_HEADDIM",
],
)
@triton.heuristics(
{
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
}
)
@triton.jit
def _bwd_kernel(
Q,
K,
V,
Bias,
DO,
DQ,
DK,
DV,
LSE,
D,
softmax_scale,
stride_qb,
stride_qh,
stride_qm,
stride_kb,
stride_kh,
stride_kn,
stride_vb,
stride_vh,
stride_vn,
stride_bb,
stride_bh,
stride_bm,
stride_dob,
stride_doh,
stride_dom,
stride_dqb,
stride_dqh,
stride_dqm,
stride_dkb,
stride_dkh,
stride_dkn,
stride_dvb,
stride_dvh,
stride_dvn,
nheads,
seqlen_q,
seqlen_k,
seqlen_q_rounded,
headdim,
CACHE_KEY_SEQLEN_Q,
CACHE_KEY_SEQLEN_K,
BIAS_TYPE: tl.constexpr,
IS_CAUSAL: tl.constexpr,
BLOCK_HEADDIM: tl.constexpr,
SEQUENCE_PARALLEL: tl.constexpr,
EVEN_M: tl.constexpr,
EVEN_N: tl.constexpr,
EVEN_HEADDIM: tl.constexpr,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
):
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
Q += off_b * stride_qb + off_h * stride_qh
K += off_b * stride_kb + off_h * stride_kh
V += off_b * stride_vb + off_h * stride_vh
DO += off_b * stride_dob + off_h * stride_doh
DQ += off_b * stride_dqb + off_h * stride_dqh
DK += off_b * stride_dkb + off_h * stride_dkh
DV += off_b * stride_dvb + off_h * stride_dvh
if BIAS_TYPE != "none":
Bias += off_b * stride_bb + off_h * stride_bh
D += off_hb * seqlen_q_rounded
LSE += off_hb * seqlen_q_rounded
if not SEQUENCE_PARALLEL:
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
for start_n in range(0, num_block_n):
_bwd_kernel_one_col_block(
start_n,
Q,
K,
V,
Bias,
DO,
DQ,
DK,
DV,
LSE,
D,
softmax_scale,
stride_qm,
stride_kn,
stride_vn,
stride_bm,
stride_dom,
stride_dqm,
stride_dkn,
stride_dvn,
seqlen_q,
seqlen_k,
headdim,
ATOMIC_ADD=False,
BIAS_TYPE=BIAS_TYPE,
IS_CAUSAL=IS_CAUSAL,
BLOCK_HEADDIM=BLOCK_HEADDIM,
EVEN_M=EVEN_M,
EVEN_N=EVEN_N,
EVEN_HEADDIM=EVEN_HEADDIM,
BLOCK_M=BLOCK_M,
BLOCK_N=BLOCK_N,
)
else:
start_n = tl.program_id(0)
_bwd_kernel_one_col_block(
start_n,
Q,
K,
V,
Bias,
DO,
DQ,
DK,
DV,
LSE,
D,
softmax_scale,
stride_qm,
stride_kn,
stride_vn,
stride_bm,
stride_dom,
stride_dqm,
stride_dkn,
stride_dvn,
seqlen_q,
seqlen_k,
headdim,
ATOMIC_ADD=True,
BIAS_TYPE=BIAS_TYPE,
IS_CAUSAL=IS_CAUSAL,
BLOCK_HEADDIM=BLOCK_HEADDIM,
EVEN_M=EVEN_M,
EVEN_N=EVEN_N,
EVEN_HEADDIM=EVEN_HEADDIM,
BLOCK_M=BLOCK_M,
BLOCK_N=BLOCK_N,
)
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
(batch, seqlen_q, nheads, d) = q.shape
(_, seqlen_k, _, _) = k.shape
assert k.shape == (batch, seqlen_k, nheads, d)
assert v.shape == (batch, seqlen_k, nheads, d)
assert d <= 128, "FlashAttention only support head dimensions up to 128"
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16"
assert q.is_cuda and k.is_cuda and v.is_cuda
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
has_bias = bias is not None
bias_type = "none"
if has_bias:
assert bias.dtype in [q.dtype, torch.float]
assert bias.is_cuda
assert bias.dim() == 4
if bias.stride(-1) != 1:
bias = bias.contiguous()
if bias.shape[2:] == (1, seqlen_k):
bias_type = "vector"
elif bias.shape[2:] == (seqlen_q, seqlen_k):
bias_type = "matrix"
else:
raise RuntimeError(
"Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)"
)
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
bias_strides = (
(bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
)
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
lse = torch.empty(
(batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32
)
tmp = torch.empty(
(batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32
)
o = torch.empty_like(q)
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
BLOCK = 128
num_warps = 4 if d <= 64 else 8
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
_fwd_kernel[grid](
q,
k,
v,
bias,
o,
lse,
tmp,
softmax_scale,
q.stride(0),
q.stride(2),
q.stride(1),
k.stride(0),
k.stride(2),
k.stride(1),
v.stride(0),
v.stride(2),
v.stride(1),
*bias_strides,
o.stride(0),
o.stride(2),
o.stride(1),
nheads,
seqlen_q,
seqlen_k,
seqlen_q_rounded,
d,
seqlen_q // 32,
seqlen_k // 32,
bias_type,
causal,
BLOCK_HEADDIM,
BLOCK_M=BLOCK,
BLOCK_N=BLOCK,
num_warps=num_warps,
num_stages=1
)
return (o, lse, softmax_scale)
def _flash_attn_backward(
do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None
):
if do.stride(-1) != 1:
do = do.contiguous()
(batch, seqlen_q, nheads, d) = q.shape
(_, seqlen_k, _, _) = k.shape
assert d <= 128
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
assert lse.shape == (batch, nheads, seqlen_q_rounded)
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
dq_accum = torch.empty_like(q, dtype=torch.float32)
delta = torch.empty_like(lse)
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
_bwd_preprocess_do_o_dot[grid](
o,
do,
delta,
o.stride(0),
o.stride(2),
o.stride(1),
do.stride(0),
do.stride(2),
do.stride(1),
nheads,
seqlen_q,
seqlen_q_rounded,
d,
BLOCK_M=128,
BLOCK_HEADDIM=BLOCK_HEADDIM,
)
has_bias = bias is not None
bias_type = "none"
if has_bias:
assert bias.dtype in [q.dtype, torch.float]
assert bias.is_cuda
assert bias.dim() == 4
assert bias.stride(-1) == 1
if bias.shape[2:] == (1, seqlen_k):
bias_type = "vector"
elif bias.shape[2:] == (seqlen_q, seqlen_k):
bias_type = "matrix"
else:
raise RuntimeError(
"Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)"
)
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
bias_strides = (
(bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
)
grid = lambda META: (
triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
batch * nheads,
)
_bwd_kernel[grid](
q,
k,
v,
bias,
do,
dq_accum,
dk,
dv,
lse,
delta,
softmax_scale,
q.stride(0),
q.stride(2),
q.stride(1),
k.stride(0),
k.stride(2),
k.stride(1),
v.stride(0),
v.stride(2),
v.stride(1),
*bias_strides,
do.stride(0),
do.stride(2),
do.stride(1),
dq_accum.stride(0),
dq_accum.stride(2),
dq_accum.stride(1),
dk.stride(0),
dk.stride(2),
dk.stride(1),
dv.stride(0),
dv.stride(2),
dv.stride(1),
nheads,
seqlen_q,
seqlen_k,
seqlen_q_rounded,
d,
seqlen_q // 32,
seqlen_k // 32,
bias_type,
causal,
BLOCK_HEADDIM
)
dq.copy_(dq_accum)
class FlashAttnQKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
"""
qkv: (batch, seqlen, 3, nheads, headdim)
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
"""
if qkv.stride(-1) != 1:
qkv = qkv.contiguous()
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
qkv[:, :, 0],
qkv[:, :, 1],
qkv[:, :, 2],
bias=bias,
causal=causal,
softmax_scale=softmax_scale,
)
ctx.save_for_backward(qkv, o, lse, bias)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
(qkv, o, lse, bias) = ctx.saved_tensors
assert not ctx.needs_input_grad[
1
], "FlashAttention does not support bias gradient yet"
with torch.inference_mode():
dqkv = torch.empty_like(qkv)
_flash_attn_backward(
do,
qkv[:, :, 0],
qkv[:, :, 1],
qkv[:, :, 2],
o,
lse,
dqkv[:, :, 0],
dqkv[:, :, 1],
dqkv[:, :, 2],
bias=bias,
causal=ctx.causal,
softmax_scale=ctx.softmax_scale,
)
return (dqkv, None, None, None)
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
class FlashAttnKVPackedFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
"""
q: (batch, seqlen_q, nheads, headdim)
kv: (batch, seqlen_k, 2, nheads, headdim)
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
"""
(q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
q,
kv[:, :, 0],
kv[:, :, 1],
bias=bias,
causal=causal,
softmax_scale=softmax_scale,
)
ctx.save_for_backward(q, kv, o, lse, bias)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
(q, kv, o, lse, bias) = ctx.saved_tensors
if len(ctx.needs_input_grad) >= 3:
assert not ctx.needs_input_grad[
2
], "FlashAttention does not support bias gradient yet"
with torch.inference_mode():
dq = torch.empty_like(q)
dkv = torch.empty_like(kv)
_flash_attn_backward(
do,
q,
kv[:, :, 0],
kv[:, :, 1],
o,
lse,
dq,
dkv[:, :, 0],
dkv[:, :, 1],
bias=bias,
causal=ctx.causal,
softmax_scale=ctx.softmax_scale,
)
return (dq, dkv, None, None, None)
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
class FlashAttnFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
"""
q: (batch_size, seqlen_q, nheads, headdim)
k, v: (batch_size, seqlen_k, nheads, headdim)
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
"""
(q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
(o, lse, ctx.softmax_scale) = _flash_attn_forward(
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale
)
ctx.save_for_backward(q, k, v, o, lse, bias)
ctx.causal = causal
return o
@staticmethod
def backward(ctx, do):
(q, k, v, o, lse, bias) = ctx.saved_tensors
assert not ctx.needs_input_grad[
3
], "FlashAttention does not support bias gradient yet"
with torch.inference_mode():
dq = torch.empty_like(q)
dk = torch.empty_like(k)
dv = torch.empty_like(v)
_flash_attn_backward(
do,
q,
k,
v,
o,
lse,
dq,
dk,
dv,
bias=bias,
causal=ctx.causal,
softmax_scale=ctx.softmax_scale,
)
return (dq, dk, dv, None, None, None)
flash_attn_func = FlashAttnFunc.apply