Professor12 commited on
Commit
63f213e
·
verified ·
1 Parent(s): b122a48

Push LunarLander-v2 model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -203.23 +/- 51.12
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d2fe0dac280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d2fe0dac310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d2fe0dac3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d2fe0dac430>", "_build": "<function ActorCriticPolicy._build at 0x7d2fe0dac4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7d2fe0dac550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d2fe0dac5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d2fe0dac670>", "_predict": "<function ActorCriticPolicy._predict at 0x7d2fe0dac700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d2fe0dac790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d2fe0dac820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d2fe0dac8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d2fe0d3d4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100352, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734117908379213688, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACbJ1b1Ue08/2WOTPn4khr6iHwI+U2FgPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFaiKFIuoP2MAWyUTQ8BjAF0lEdAXYDvw3HaOHV9lChoBkfAZkQQxvegtmgHTWwBaAhHQF2hSBshxHZ1fZQoaAZHQDCupWFN+LFoB03oA2gIR0BeJhpg1FYudX2UKGgGR0AB3seGO+7EaAdLzWgIR0BeP/rGBFuvdX2UKGgGR8BPqs3yZrpJaAdL7GgIR0BecBMrVe8gdX2UKGgGR8BmONKXfIjoaAdNvAFoCEdAXpbsfJV81HV9lChoBkdAQDYL7XQMQWgHTegDaAhHQF8DCq6vq1R1fZQoaAZHwFS6qp97WupoB0vMaAhHQF8UsnAqNId1fZQoaAZHwGXRca4tpVVoB01SAWgIR0BfRaPKdQO4dX2UKGgGR8BjLT2Jzkp7aAdLw2gIR0BfVow7DEWJdX2UKGgGR8BRkDH4oJAuaAdLxWgIR0BfZ4oAn2IwdX2UKGgGR0AxCKGL1mJ4aAdN6ANoCEdAX9SCBf8dgnV9lChoBkdAW3GpiqhlDmgHTegDaAhHQGAg1nVXmvJ1fZQoaAZHQEEomXw9aEBoB03oA2gIR0BgV3Adn004dX2UKGgGR0ApuVwgkka/aAdLumgIR0BgX9rIo3JgdX2UKGgGR8BBVOloDgZTaAdNLAFoCEdAYG1MdtEXtXV9lChoBkfAakYtZmqYJGgHTbgBaAhHQGCSNcOby6N1fZQoaAZHwGpPYO+ZgG9oB0v0aAhHQGChm0VrRBx1fZQoaAZHwDAJsHjZL7JoB00nAWgIR0Bgs2ws5GSZdX2UKGgGR8BJOBhx5s0paAdL0GgIR0BgyeQU5+6RdX2UKGgGR8BXZghfShJzaAdNFwFoCEdAYNYKIi1RcnV9lChoBkfAU1DZwn6VMWgHS9hoCEdAYOAgGKQ7tHV9lChoBke/6BLK3d9DyGgHS/NoCEdAYOqpmVZ9u3V9lChoBkdAW6THR1HOKWgHTegDaAhHQGEhLgOz6ad1fZQoaAZHQFrJ8g6ltTFoB03oA2gIR0BhV4tg8bJfdX2UKGgGR8ABEWhysCDFaAdNFgFoCEdAYW028Zk08HV9lChoBkdAQYr8vVVghWgHS6VoCEdAYXRupCKJmHV9lChoBkdAFaQVKwpvxmgHS6toCEdAYXwg/TsponV9lChoBkfAJLaf8MuvlmgHS7NoCEdAYYQzC1qnFnV9lChoBkdAPUHDJlrdnGgHS8NoCEdAYYzDbah6B3V9lChoBkfASun5YYBNmGgHS7JoCEdAYZR4ZdfLLnV9lChoBkdAQ9IK6WgOBmgHTegDaAhHQGHK9oFmnO11fZQoaAZHwEFeexwAEMdoB0uyaAhHQGHcIoE0SAZ1fZQoaAZHwEGRlGPPszFoB0ucaAhHQGHjA3cYZVJ1fZQoaAZHwFVmb3Gn4whoB0uMaAhHQGHpRigCfYl1fZQoaAZHwFg+ot+TeO5oB0uoaAhHQGHwbT2FnI11fZQoaAZHwFHegxrSE15oB0uRaAhHQGH2tKqXF991fZQoaAZHQEiPJVbRne1oB0uvaAhHQGH+StV7x/d1fZQoaAZHQF3Vg6EJ0GNoB03oA2gIR0BiRnPVurIYdX2UKGgGR8A28HlwLmZFaAdLu2gIR0BiUSzsyBTXdX2UKGgGR8Az6hcJMQEqaAdLkWgIR0BiYNdRiw0PdX2UKGgGR8BT83tfG+9KaAdLaWgIR0BiZZ5TqB3BdX2UKGgGR8Bd2/tQbdadaAdLoWgIR0BibNyeZof0dX2UKGgGR0A37I6r/82raAdLk2gIR0Bic05S3soldX2UKGgGR8AQM4MnZ00WaAdLr2gIR0BieyVv/BFedX2UKGgGR8Aq3T5O8CgcaAdLrmgIR0BigsXenAIqdX2UKGgGR8AkTRaX8fmtaAdLh2gIR0BiiL0WdmQKdX2UKGgGR8BHANLDhtLtaAdLsGgIR0Bimhw4sEq2dX2UKGgGR8BAUlglWwNcaAdLqWgIR0BioX/FR51OdX2UKGgGR8BD7wdsBQvYaAdLp2gIR0BiqNWwNb1RdX2UKGgGR0Aw4eJYT0xuaAdLn2gIR0BisCKvV3EAdX2UKGgGR8BC/PmxMWXUaAdLimgIR0BitiWPcSGrdX2UKGgGR8BHzuMMqjJuaAdLwGgIR0BivpzcRDkVdX2UKGgGR0Aw12LYPGyYaAdLhmgIR0BizgrWiDdydX2UKGgGR8BbFGl67dzoaAdLimgIR0Bi1FIoVmBfdX2UKGgGR8BOK6uW8h9taAdLu2gIR0Bi3LxCpm29dX2UKGgGR0BNA/LkjopyaAdN6ANoCEdAYxPgJkXk53V9lChoBkfAQqYrSVnmJWgHS2JoCEdAYxhFXJYDDHV9lChoBkfAYh8IUJv5xmgHS5toCEdAYx8hM8HObHV9lChoBkdARNhh4MWoFWgHS5poCEdAYyXOoo/iYXV9lChoBkfABLyvLX+VDGgHS6hoCEdAYyz212JSBXV9lChoBkfAYYuwPAfuC2gHTQUBaAhHQGNCK02LpA51fZQoaAZHQGA+KEWZZ0VoB03oA2gIR0BjeDzVc2R8dX2UKGgGR8BXFbEtNBWxaAdLtmgIR0BjgDU/fO2RdX2UKGgGR0AqqSuhbnoxaAdLl2gIR0BjhsWoFV1fdX2UKGgGR8BNI6xgRbr1aAdLhmgIR0BjjLGNrCWNdX2UKGgGR8AwqgCOmzjWaAdLlGgIR0BjlaMaS9uhdX2UKGgGR0BUUZeAuqWDaAdN6ANoCEdAY97cHGCI13V9lChoBkdAVOghgVoHs2gHTegDaAhHQGQZ2V3Ux211fZQoaAZHwCTD0voNd7hoB0u7aAhHQGQh9FOO8011fZQoaAZHwErWGTLW7OFoB0tlaAhHQGQmOdf9gnd1fZQoaAZHQF6+6ij+JgtoB03oA2gIR0BkXGyxA0KrdX2UKGgGR7/lRUWEbo8qaAdLaGgIR0BkajGipNsWdX2UKGgGR8A9hR/EwWWQaAdLoGgIR0BkcUwrUb1idX2UKGgGR8BTBC2c8TzvaAdLtWgIR0BkedNUOuq4dX2UKGgGR0Ayn3Jgb6xgaAdLnmgIR0BkgRwwTM7mdX2UKGgGR0A5Fb/Ot4iYaAdLt2gIR0BkiSG8EmpmdX2UKGgGR0AxMv1DjR2KaAdLsGgIR0BkkNOuaF23dX2UKGgGR8BllkRSP2f1aAdNXwFoCEdAZKnKmsNlRXV9lChoBkfAFBGkep4r0GgHS45oCEdAZLAHnlnyu3V9lChoBkfAQ9bz9S/CZWgHS5poCEdAZLbNjbzshXV9lChoBkdAVcXCrLhaT2gHTegDaAhHQGTs2IO6NER1fZQoaAZHwDO4dFOO801oB0vuaAhHQGT3QrlNlAh1fZQoaAZHwDZYO09hZyNoB0unaAhHQGT/FLFn7Hh1fZQoaAZHQBqBGMGX5WRoB03oA2gIR0BlOOd07r9mdX2UKGgGR0AxVUPhAGB4aAdLmmgIR0BlTZwKjSG8dX2UKGgGR0BQt5JK8L8aaAdLjmgIR0BlVqU1Q66rdX2UKGgGR0BKOuAqd6LPaAdLmWgIR0BlYpa7mMfjdX2UKGgGR8AjaygwoLG8aAdLimgIR0Bla1ZDArQPdX2UKGgGR0A1jjhUBGQTaAdLyWgIR0BlebA+IMz/dX2UKGgGR8BCDOQIUrTZaAdLjGgIR0BlhNgSeyzHdX2UKGgGR0AoDwuuieunaAdLs2gIR0Blkr0Dlo12dX2UKGgGR8BNvPoFFDv3aAdLyWgIR0BlrzneSB9UdX2UKGgGR8BVXuRoysS1aAdLgWgIR0Blt6RlpXZHdX2UKGgGR0BV3F54W1twaAdN6ANoCEdAZfQc2itaIXV9lChoBkfARYdoL5RCQmgHS6xoCEdAZfvbblA/s3V9lChoBkfAJyk4//vOQmgHS5xoCEdAZgKqNIbwSnV9lChoBkdAJD0qH446wWgHTegDaAhHQGY5Tzd1uBN1fZQoaAZHwEOWelKsdT5oB0vLaAhHQGZCsEq2Brh1fZQoaAZHQEdFNX5nDixoB0uVaAhHQGZJOCf6Gg11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 392, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883e445baf24f87035588012122a880d1329f23c36388db212212663b02704c6
3
+ size 147266
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d2fe0dac280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d2fe0dac310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d2fe0dac3a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d2fe0dac430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d2fe0dac4c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d2fe0dac550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d2fe0dac5e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d2fe0dac670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d2fe0dac700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d2fe0dac790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d2fe0dac820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d2fe0dac8b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d2fe0d3d4c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 100352,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1734117908379213688,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACbJ1b1Ue08/2WOTPn4khr6iHwI+U2FgPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0035199999999999676,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFaiKFIuoP2MAWyUTQ8BjAF0lEdAXYDvw3HaOHV9lChoBkfAZkQQxvegtmgHTWwBaAhHQF2hSBshxHZ1fZQoaAZHQDCupWFN+LFoB03oA2gIR0BeJhpg1FYudX2UKGgGR0AB3seGO+7EaAdLzWgIR0BeP/rGBFuvdX2UKGgGR8BPqs3yZrpJaAdL7GgIR0BecBMrVe8gdX2UKGgGR8BmONKXfIjoaAdNvAFoCEdAXpbsfJV81HV9lChoBkdAQDYL7XQMQWgHTegDaAhHQF8DCq6vq1R1fZQoaAZHwFS6qp97WupoB0vMaAhHQF8UsnAqNId1fZQoaAZHwGXRca4tpVVoB01SAWgIR0BfRaPKdQO4dX2UKGgGR8BjLT2Jzkp7aAdLw2gIR0BfVow7DEWJdX2UKGgGR8BRkDH4oJAuaAdLxWgIR0BfZ4oAn2IwdX2UKGgGR0AxCKGL1mJ4aAdN6ANoCEdAX9SCBf8dgnV9lChoBkdAW3GpiqhlDmgHTegDaAhHQGAg1nVXmvJ1fZQoaAZHQEEomXw9aEBoB03oA2gIR0BgV3Adn004dX2UKGgGR0ApuVwgkka/aAdLumgIR0BgX9rIo3JgdX2UKGgGR8BBVOloDgZTaAdNLAFoCEdAYG1MdtEXtXV9lChoBkfAakYtZmqYJGgHTbgBaAhHQGCSNcOby6N1fZQoaAZHwGpPYO+ZgG9oB0v0aAhHQGChm0VrRBx1fZQoaAZHwDAJsHjZL7JoB00nAWgIR0Bgs2ws5GSZdX2UKGgGR8BJOBhx5s0paAdL0GgIR0BgyeQU5+6RdX2UKGgGR8BXZghfShJzaAdNFwFoCEdAYNYKIi1RcnV9lChoBkfAU1DZwn6VMWgHS9hoCEdAYOAgGKQ7tHV9lChoBke/6BLK3d9DyGgHS/NoCEdAYOqpmVZ9u3V9lChoBkdAW6THR1HOKWgHTegDaAhHQGEhLgOz6ad1fZQoaAZHQFrJ8g6ltTFoB03oA2gIR0BhV4tg8bJfdX2UKGgGR8ABEWhysCDFaAdNFgFoCEdAYW028Zk08HV9lChoBkdAQYr8vVVghWgHS6VoCEdAYXRupCKJmHV9lChoBkdAFaQVKwpvxmgHS6toCEdAYXwg/TsponV9lChoBkfAJLaf8MuvlmgHS7NoCEdAYYQzC1qnFnV9lChoBkdAPUHDJlrdnGgHS8NoCEdAYYzDbah6B3V9lChoBkfASun5YYBNmGgHS7JoCEdAYZR4ZdfLLnV9lChoBkdAQ9IK6WgOBmgHTegDaAhHQGHK9oFmnO11fZQoaAZHwEFeexwAEMdoB0uyaAhHQGHcIoE0SAZ1fZQoaAZHwEGRlGPPszFoB0ucaAhHQGHjA3cYZVJ1fZQoaAZHwFVmb3Gn4whoB0uMaAhHQGHpRigCfYl1fZQoaAZHwFg+ot+TeO5oB0uoaAhHQGHwbT2FnI11fZQoaAZHwFHegxrSE15oB0uRaAhHQGH2tKqXF991fZQoaAZHQEiPJVbRne1oB0uvaAhHQGH+StV7x/d1fZQoaAZHQF3Vg6EJ0GNoB03oA2gIR0BiRnPVurIYdX2UKGgGR8A28HlwLmZFaAdLu2gIR0BiUSzsyBTXdX2UKGgGR8Az6hcJMQEqaAdLkWgIR0BiYNdRiw0PdX2UKGgGR8BT83tfG+9KaAdLaWgIR0BiZZ5TqB3BdX2UKGgGR8Bd2/tQbdadaAdLoWgIR0BibNyeZof0dX2UKGgGR0A37I6r/82raAdLk2gIR0Bic05S3soldX2UKGgGR8AQM4MnZ00WaAdLr2gIR0BieyVv/BFedX2UKGgGR8Aq3T5O8CgcaAdLrmgIR0BigsXenAIqdX2UKGgGR8AkTRaX8fmtaAdLh2gIR0BiiL0WdmQKdX2UKGgGR8BHANLDhtLtaAdLsGgIR0Bimhw4sEq2dX2UKGgGR8BAUlglWwNcaAdLqWgIR0BioX/FR51OdX2UKGgGR8BD7wdsBQvYaAdLp2gIR0BiqNWwNb1RdX2UKGgGR0Aw4eJYT0xuaAdLn2gIR0BisCKvV3EAdX2UKGgGR8BC/PmxMWXUaAdLimgIR0BitiWPcSGrdX2UKGgGR8BHzuMMqjJuaAdLwGgIR0BivpzcRDkVdX2UKGgGR0Aw12LYPGyYaAdLhmgIR0BizgrWiDdydX2UKGgGR8BbFGl67dzoaAdLimgIR0Bi1FIoVmBfdX2UKGgGR8BOK6uW8h9taAdLu2gIR0Bi3LxCpm29dX2UKGgGR0BNA/LkjopyaAdN6ANoCEdAYxPgJkXk53V9lChoBkfAQqYrSVnmJWgHS2JoCEdAYxhFXJYDDHV9lChoBkfAYh8IUJv5xmgHS5toCEdAYx8hM8HObHV9lChoBkdARNhh4MWoFWgHS5poCEdAYyXOoo/iYXV9lChoBkfABLyvLX+VDGgHS6hoCEdAYyz212JSBXV9lChoBkfAYYuwPAfuC2gHTQUBaAhHQGNCK02LpA51fZQoaAZHQGA+KEWZZ0VoB03oA2gIR0BjeDzVc2R8dX2UKGgGR8BXFbEtNBWxaAdLtmgIR0BjgDU/fO2RdX2UKGgGR0AqqSuhbnoxaAdLl2gIR0BjhsWoFV1fdX2UKGgGR8BNI6xgRbr1aAdLhmgIR0BjjLGNrCWNdX2UKGgGR8AwqgCOmzjWaAdLlGgIR0BjlaMaS9uhdX2UKGgGR0BUUZeAuqWDaAdN6ANoCEdAY97cHGCI13V9lChoBkdAVOghgVoHs2gHTegDaAhHQGQZ2V3Ux211fZQoaAZHwCTD0voNd7hoB0u7aAhHQGQh9FOO8011fZQoaAZHwErWGTLW7OFoB0tlaAhHQGQmOdf9gnd1fZQoaAZHQF6+6ij+JgtoB03oA2gIR0BkXGyxA0KrdX2UKGgGR7/lRUWEbo8qaAdLaGgIR0BkajGipNsWdX2UKGgGR8A9hR/EwWWQaAdLoGgIR0BkcUwrUb1idX2UKGgGR8BTBC2c8TzvaAdLtWgIR0BkedNUOuq4dX2UKGgGR0Ayn3Jgb6xgaAdLnmgIR0BkgRwwTM7mdX2UKGgGR0A5Fb/Ot4iYaAdLt2gIR0BkiSG8EmpmdX2UKGgGR0AxMv1DjR2KaAdLsGgIR0BkkNOuaF23dX2UKGgGR8BllkRSP2f1aAdNXwFoCEdAZKnKmsNlRXV9lChoBkfAFBGkep4r0GgHS45oCEdAZLAHnlnyu3V9lChoBkfAQ9bz9S/CZWgHS5poCEdAZLbNjbzshXV9lChoBkdAVcXCrLhaT2gHTegDaAhHQGTs2IO6NER1fZQoaAZHwDO4dFOO801oB0vuaAhHQGT3QrlNlAh1fZQoaAZHwDZYO09hZyNoB0unaAhHQGT/FLFn7Hh1fZQoaAZHQBqBGMGX5WRoB03oA2gIR0BlOOd07r9mdX2UKGgGR0AxVUPhAGB4aAdLmmgIR0BlTZwKjSG8dX2UKGgGR0BQt5JK8L8aaAdLjmgIR0BlVqU1Q66rdX2UKGgGR0BKOuAqd6LPaAdLmWgIR0BlYpa7mMfjdX2UKGgGR8AjaygwoLG8aAdLimgIR0Bla1ZDArQPdX2UKGgGR0A1jjhUBGQTaAdLyWgIR0BlebA+IMz/dX2UKGgGR8BCDOQIUrTZaAdLjGgIR0BlhNgSeyzHdX2UKGgGR0AoDwuuieunaAdLs2gIR0Blkr0Dlo12dX2UKGgGR8BNvPoFFDv3aAdLyWgIR0BlrzneSB9UdX2UKGgGR8BVXuRoysS1aAdLgWgIR0Blt6RlpXZHdX2UKGgGR0BV3F54W1twaAdN6ANoCEdAZfQc2itaIXV9lChoBkfARYdoL5RCQmgHS6xoCEdAZfvbblA/s3V9lChoBkfAJyk4//vOQmgHS5xoCEdAZgKqNIbwSnV9lChoBkdAJD0qH446wWgHTegDaAhHQGY5Tzd1uBN1fZQoaAZHwEOWelKsdT5oB0vLaAhHQGZCsEq2Brh1fZQoaAZHQEdFNX5nDixoB0uVaAhHQGZJOCf6Gg11ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 392,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c50468a8b020bbd557fda12e1d125585d6cf5b36f5d87ef6f7eca1dea00b8fd
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c510da4418c0b70558e20ee12a289d1a17503fb19ab62e15047f2cf7261aebb
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (139 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -203.2331526, "std_reward": 51.11567694328519, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-13T19:41:01.426440"}