File size: 1,731 Bytes
9a3b244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: CohereForAI/aya-expanse-8b
library_name: peft
license: other
tags:
- llama-factory
- lora
- unsloth
- generated_from_trainer
model-index:
- name: la-cohere-aya-expanse-8b-8k_4bit_r32_alpha_16_lr1e-4_3ep
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# la-cohere-aya-expanse-8b-8k_4bit_r32_alpha_16_lr1e-4_3ep

This model is a fine-tuned version of [CohereForAI/aya-expanse-8b](https://huggingface.co./CohereForAI/aya-expanse-8b) on the la_chat_data_v4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3464

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2.0

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.5011        | 0.6649 | 10000 | 0.4348          |
| 0.4008        | 1.3299 | 20000 | 0.3684          |
| 0.4035        | 1.9948 | 30000 | 0.3464          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.46.1
- Pytorch 2.4.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.3