--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy - f1 - precision - recall model-index: - name: my_distilbert_model results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8433395872420263 - name: F1 type: f1 value: 0.8432898032121621 - name: Precision type: precision value: 0.843776433767552 - name: Recall type: recall value: 0.8433395872420262 --- # my_distilbert_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.5593 - Accuracy: 0.8433 - F1: 0.8433 - Precision: 0.8438 - Recall: 0.8433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4222 | 1.0 | 534 | 0.3821 | 0.8424 | 0.8421 | 0.8450 | 0.8424 | | 0.2558 | 2.0 | 1068 | 0.4620 | 0.8433 | 0.8432 | 0.8445 | 0.8433 | | 0.1609 | 3.0 | 1602 | 0.5593 | 0.8433 | 0.8433 | 0.8438 | 0.8433 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1