PranavY2k commited on
Commit
fd15733
·
1 Parent(s): 94ea8e6

End of training

Browse files
Files changed (2) hide show
  1. README.md +92 -0
  2. pytorch_model.bin +1 -1
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - rotten_tomatoes
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: my_distilbert_model
15
+ results:
16
+ - task:
17
+ name: Text Classification
18
+ type: text-classification
19
+ dataset:
20
+ name: rotten_tomatoes
21
+ type: rotten_tomatoes
22
+ config: default
23
+ split: test
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.8433395872420263
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8432898032121621
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.843776433767552
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.8433395872420262
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # my_distilbert_model
44
+
45
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.5593
48
+ - Accuracy: 0.8433
49
+ - F1: 0.8433
50
+ - Precision: 0.8438
51
+ - Recall: 0.8433
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
81
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
82
+ | 0.4222 | 1.0 | 534 | 0.3821 | 0.8424 | 0.8421 | 0.8450 | 0.8424 |
83
+ | 0.2558 | 2.0 | 1068 | 0.4620 | 0.8433 | 0.8432 | 0.8445 | 0.8433 |
84
+ | 0.1609 | 3.0 | 1602 | 0.5593 | 0.8433 | 0.8433 | 0.8438 | 0.8433 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.34.1
90
+ - Pytorch 2.1.0
91
+ - Datasets 2.14.6
92
+ - Tokenizers 0.14.1
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:89317576d13db8b0b225101cae5e2054377b2c3320df4149141b9eedf439e87f
3
  size 267854570
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f93970521927489138a45c00d29c14997fcaf517cbe08c95ae285334902ec4a9
3
  size 267854570