--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - ProbeMedicalYonseiMAILab/medllama3-v20 - HPAI-BSC/Llama3-Aloe-8B-Alpha base_model: - ProbeMedicalYonseiMAILab/medllama3-v20 - HPAI-BSC/Llama3-Aloe-8B-Alpha model-index: - name: LaMistral-V4 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 62.39 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=PranavHarshan/LaMistral-V4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 31.09 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=PranavHarshan/LaMistral-V4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.34 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=PranavHarshan/LaMistral-V4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 10.4 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=PranavHarshan/LaMistral-V4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 5.64 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=PranavHarshan/LaMistral-V4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 28.87 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=PranavHarshan/LaMistral-V4 name: Open LLM Leaderboard --- # LaMistral-V4 LaMistral-V4 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [ProbeMedicalYonseiMAILab/medllama3-v20](https://huggingface.co./ProbeMedicalYonseiMAILab/medllama3-v20) * [HPAI-BSC/Llama3-Aloe-8B-Alpha](https://huggingface.co./HPAI-BSC/Llama3-Aloe-8B-Alpha) ## 🧩 Configuration ```yaml slices: - sources: - model: ProbeMedicalYonseiMAILab/medllama3-v20 layer_range: [0, 32] - model: HPAI-BSC/Llama3-Aloe-8B-Alpha layer_range: [0, 32] merge_method: slerp base_model: ProbeMedicalYonseiMAILab/medllama3-v20 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "PranavHarshan/LaMistral-V4" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_PranavHarshan__LaMistral-V4) | Metric |Value| |-------------------|----:| |Avg. |24.12| |IFEval (0-Shot) |62.39| |BBH (3-Shot) |31.09| |MATH Lvl 5 (4-Shot)| 6.34| |GPQA (0-shot) |10.40| |MuSR (0-shot) | 5.64| |MMLU-PRO (5-shot) |28.87|