--- language: - en - ko datasets: - kyujinpy/KOR-OpenOrca-Platypus-v3 pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- # **SOLAR-tail-10.7B-instruct-v1.0** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Method** Instruction-tuning with [PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0](https://huggingface.co./PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0). **Datasets** datasets: [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3). **Hyperparameters** (I will update all!) # **Model Benchmark** ## Open leaderboard - Follow up as [link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Ko-CommonGenV2 | | --- | --- | --- | --- | --- | --- | --- | | **PracticeLLM/SOLAR-tail-10.7B-instruct-v1.0** | 51.70 | 46.93 | 58.19 | 53.15 | 46.52 | 53.72 | | PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 | 48.32 | 45.73 | 56.97 | 38.77 | 38.75 | 61.16 | | jjourney1125/M-SOLAR-10.7B-v1.0 | 55.15 | 49.57 | 60.12 | 54.60 | 49.23 | 62.22 | # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "PracticeLLM/SOLAR-tail-10.7B-instruct-v1.0" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---