--- language: - ko datasets: - kyujinpy/KOR-OpenOrca-Platypus-v3 library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- # **⭐My custom LLM 13B⭐** ## Model Details **Model Developers** - Kyujin Han (kyujinpy) **Model Architecture** - My custom LLM 13B is an auto-regressive language model based on the LLaMA2 transformer architecture. **Base Model** - [beomi/llama-2-koen-13b](https://huggingface.co./beomi/llama-2-koen-13b) **Training Dataset** - [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3). --- # Model comparisons > Ko-LLM leaderboard(11/27; [link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)) | Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --- | --- | --- | --- | --- | --- | --- | | ⭐My custom LLM 13B-v1⭐ | **50.19** | **45.99** | 56.93 | 41.78 | 41.66 | **64.58** | | ⭐My custom LLM 13B-v4⭐ | 49.89 | 45.05 | **57.06** | 41.83 | **42.93** | 62.57 | | **⭐My custom LLM 13B-v7⭐** | NaN | NaN | NaN | NaN | NaN | NaN | --- # Model comparisons2 > AI-Harness evaluation; [link](https://github.com/Beomi/ko-lm-evaluation-harness) | Model | Copa | Copa | HellaSwag | HellaSwag | BoolQ | BoolQ | Sentineg | Sentineg | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | | ⭐My custom LLM 13B-v1⭐ | 0.7987 | 0.8269 | 0.4994 | 0.5660 | 0.3343 | 0.5060 | 0.6984 | 0.9723 | | ⭐My custom LLM 13B-v4⭐** | **0.7988** | 0.8279 | **0.4995** | 0.4953 | 0.3343 | 0.3558 | **0.7825** | 0.9698 | | **⭐My custom LLM 13B-v7⭐** | 0.7958 | 0.8289 | 0.4944 | 0.4932 | **0.3359** | 0.4696 | 0.4876 | 0.9748 | | [beomi/llama-2-koen-13b](https://huggingface.co./beomi/llama-2-koen-13b) | 0.7768 | 0.8128 | 0.4999 | 0.5127 | 0.3988 | 0.7038 | 0.5870 | 0.9748 | --- # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "PracticeLLM/Custom-KoLLM-13B-v7" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` # Hyperparameters - QLoRA - lora_target_modules '[gate_proj, down_proj, up_proj]' - lora_r 64