--- language: - ko datasets: - kyujinpy/KOR-OpenOrca-Platypus-v3 library_name: transformers pipeline_tag: text-generation license: cc-by-nc-sa-4.0 --- # **⭐My custom LLM 13B⭐** ## Model Details **Model Developers** - Kyujin Han (kyujinpy) **Model Architecture** - ko-platypus-kiwi-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. **Base Model** - [beomi/llama-2-koen-13b](https://huggingface.co./beomi/llama-2-koen-13b) **Training Dataset** - [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3). # Model comparisons | Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --- | --- | --- | --- | --- | --- | --- | | **⭐My custom LLM 13B⭐** | NaN | NaN | NaN | NaN | NaN | NaN | > Ko-LLM leaderboard(11/23; [link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)) # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "PracticeLLM/Custom-KoLLM-13B-v1" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---