File size: 1,330 Bytes
b0aa9ac
b2e3ed4
 
 
 
 
 
b0aa9ac
 
b2e3ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bdcd79
b2e3ed4
f2647ab
 
b2e3ed4
 
a557c54
b2e3ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
language:
- ko
datasets: 
- kyujinpy/KOR-OpenOrca-Platypus-v3
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---

# **⭐My custom LLM 13B⭐**  

## Model Details   
**Model Developers** 
- Kyujin Han (kyujinpy)  

**Model Architecture**  
- ko-platypus-kiwi-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.  

**Base Model**   
- [beomi/llama-2-koen-13b](https://huggingface.co./beomi/llama-2-koen-13b)   

**Training Dataset**   
- [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3). 

---  
# Model comparisons
> Ko-LLM leaderboard(11/23; [link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard))
   
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| **⭐My custom LLM 13B⭐** | NaN | NaN | NaN | NaN | NaN | NaN | 

# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "PracticeLLM/Custom-KoLLM-13B-v1"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```

---