File size: 1,922 Bytes
b0aa9ac b2e3ed4 b0aa9ac b2e3ed4 48e5ac8 b2e3ed4 8bdcd79 dd3bd52 f2647ab b2e3ed4 f1a9c2a b2e3ed4 dd3bd52 d164f9f b5d0dc3 90f98ee b5d0dc3 dd3bd52 b5d0dc3 dd3bd52 b2e3ed4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language:
- ko
datasets:
- kyujinpy/KOR-OpenOrca-Platypus-v3
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
# **⭐My custom LLM 13B⭐**
## Model Details
**Model Developers**
- Kyujin Han (kyujinpy)
**Model Architecture**
- My custom LLM 13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
**Base Model**
- [beomi/llama-2-koen-13b](https://huggingface.co./beomi/llama-2-koen-13b)
**Training Dataset**
- [kyujinpy/KOR-OpenOrca-Platypus-v3](https://huggingface.co./datasets/kyujinpy/KOR-OpenOrca-Platypus-v3).
---
# Model comparisons1
> Ko-LLM leaderboard(11/23; [link](https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard))
| Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| **⭐My custom LLM 13B⭐** | 50.19 | 45.99 | 56.93 | 41.78 | 41.66 | **64.58** |
---
# Model comparisons2
> AI-Harness evaluation; [link](https://github.com/Beomi/ko-lm-evaluation-harness)
| Model | Copa | Copa | HellaSwag | HellaSwag | BoolQ | BoolQ | Sentineg | Sentineg |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot |
| **⭐My custom LLM 13B⭐** | NaN | 0.8269 | NaN | 0.5660 | NaN | 0.5060 | NaN | 0.9723 |
| [beomi/llama-2-koen-13b](https://huggingface.co./beomi/llama-2-koen-13b) | 0.7768 | 0.8128 | 0.4999 | 0.5127 | 0.3988 | 0.7038 | 0.5870 | 0.9748 |
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/Custom-KoLLM-13B-v1"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
---
|