diff --git "a/README.md" "b/README.md" --- "a/README.md" +++ "b/README.md" @@ -1,3 +1,2827 @@ ---- -license: apache-2.0 ---- +--- +tags: +- mteb +- transformers.js +- transformers +model-index: +- name: mxbai-angle-large-v1 + results: + - task: + type: Classification + dataset: + type: mteb/amazon_counterfactual + name: MTEB AmazonCounterfactualClassification (en) + config: en + split: test + revision: e8379541af4e31359cca9fbcf4b00f2671dba205 + metrics: + - type: accuracy + value: 75.044776119403 + - type: ap + value: 37.7362433623053 + - type: f1 + value: 68.92736573359774 + - task: + type: Classification + dataset: + type: mteb/amazon_polarity + name: MTEB AmazonPolarityClassification + config: default + split: test + revision: e2d317d38cd51312af73b3d32a06d1a08b442046 + metrics: + - type: accuracy + value: 93.84025000000001 + - type: ap + value: 90.93190875404055 + - type: f1 + value: 93.8297833897293 + - task: + type: Classification + dataset: + type: mteb/amazon_reviews_multi + name: MTEB AmazonReviewsClassification (en) + config: en + split: test + revision: 1399c76144fd37290681b995c656ef9b2e06e26d + metrics: + - type: accuracy + value: 49.184 + - type: f1 + value: 48.74163227751588 + - task: + type: Retrieval + dataset: + type: arguana + name: MTEB ArguAna + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 41.252 + - type: map_at_10 + value: 57.778 + - type: map_at_100 + value: 58.233000000000004 + - type: map_at_1000 + value: 58.23700000000001 + - type: map_at_3 + value: 53.449999999999996 + - type: map_at_5 + value: 56.376000000000005 + - type: mrr_at_1 + value: 41.679 + - type: mrr_at_10 + value: 57.92699999999999 + - type: mrr_at_100 + value: 58.389 + - type: mrr_at_1000 + value: 58.391999999999996 + - type: mrr_at_3 + value: 53.651 + - type: mrr_at_5 + value: 56.521 + - type: ndcg_at_1 + value: 41.252 + - type: ndcg_at_10 + value: 66.018 + - type: ndcg_at_100 + value: 67.774 + - type: ndcg_at_1000 + value: 67.84400000000001 + - type: ndcg_at_3 + value: 57.372 + - type: ndcg_at_5 + value: 62.646 + - type: precision_at_1 + value: 41.252 + - type: precision_at_10 + value: 9.189 + - type: precision_at_100 + value: 0.991 + - type: precision_at_1000 + value: 0.1 + - type: precision_at_3 + value: 22.902 + - type: precision_at_5 + value: 16.302 + - type: recall_at_1 + value: 41.252 + - type: recall_at_10 + value: 91.892 + - type: recall_at_100 + value: 99.14699999999999 + - type: recall_at_1000 + value: 99.644 + - type: recall_at_3 + value: 68.706 + - type: recall_at_5 + value: 81.50800000000001 + - task: + type: Clustering + dataset: + type: mteb/arxiv-clustering-p2p + name: MTEB ArxivClusteringP2P + config: default + split: test + revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d + metrics: + - type: v_measure + value: 48.97294504317859 + - task: + type: Clustering + dataset: + type: mteb/arxiv-clustering-s2s + name: MTEB ArxivClusteringS2S + config: default + split: test + revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 + metrics: + - type: v_measure + value: 42.98071077674629 + - task: + type: Reranking + dataset: + type: mteb/askubuntudupquestions-reranking + name: MTEB AskUbuntuDupQuestions + config: default + split: test + revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 + metrics: + - type: map + value: 65.16477858490782 + - type: mrr + value: 78.23583080508287 + - task: + type: STS + dataset: + type: mteb/biosses-sts + name: MTEB BIOSSES + config: default + split: test + revision: d3fb88f8f02e40887cd149695127462bbcf29b4a + metrics: + - type: cos_sim_pearson + value: 89.6277629421789 + - type: cos_sim_spearman + value: 88.4056288400568 + - type: euclidean_pearson + value: 87.94871847578163 + - type: euclidean_spearman + value: 88.4056288400568 + - type: manhattan_pearson + value: 87.73271254229648 + - type: manhattan_spearman + value: 87.91826833762677 + - task: + type: Classification + dataset: + type: mteb/banking77 + name: MTEB Banking77Classification + config: default + split: test + revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 + metrics: + - type: accuracy + value: 87.81818181818181 + - type: f1 + value: 87.79879337316918 + - task: + type: Clustering + dataset: + type: mteb/biorxiv-clustering-p2p + name: MTEB BiorxivClusteringP2P + config: default + split: test + revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 + metrics: + - type: v_measure + value: 39.91773608582761 + - task: + type: Clustering + dataset: + type: mteb/biorxiv-clustering-s2s + name: MTEB BiorxivClusteringS2S + config: default + split: test + revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 + metrics: + - type: v_measure + value: 36.73059477462478 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackAndroidRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 32.745999999999995 + - type: map_at_10 + value: 43.632 + - type: map_at_100 + value: 45.206 + - type: map_at_1000 + value: 45.341 + - type: map_at_3 + value: 39.956 + - type: map_at_5 + value: 42.031 + - type: mrr_at_1 + value: 39.485 + - type: mrr_at_10 + value: 49.537 + - type: mrr_at_100 + value: 50.249 + - type: mrr_at_1000 + value: 50.294000000000004 + - type: mrr_at_3 + value: 46.757 + - type: mrr_at_5 + value: 48.481 + - type: ndcg_at_1 + value: 39.485 + - type: ndcg_at_10 + value: 50.058 + - type: ndcg_at_100 + value: 55.586 + - type: ndcg_at_1000 + value: 57.511 + - type: ndcg_at_3 + value: 44.786 + - type: ndcg_at_5 + value: 47.339999999999996 + - type: precision_at_1 + value: 39.485 + - type: precision_at_10 + value: 9.557 + - type: precision_at_100 + value: 1.552 + - type: precision_at_1000 + value: 0.202 + - type: precision_at_3 + value: 21.412 + - type: precision_at_5 + value: 15.479000000000001 + - type: recall_at_1 + value: 32.745999999999995 + - type: recall_at_10 + value: 62.056 + - type: recall_at_100 + value: 85.088 + - type: recall_at_1000 + value: 96.952 + - type: recall_at_3 + value: 46.959 + - type: recall_at_5 + value: 54.06999999999999 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackEnglishRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 31.898 + - type: map_at_10 + value: 42.142 + - type: map_at_100 + value: 43.349 + - type: map_at_1000 + value: 43.483 + - type: map_at_3 + value: 39.18 + - type: map_at_5 + value: 40.733000000000004 + - type: mrr_at_1 + value: 39.617999999999995 + - type: mrr_at_10 + value: 47.922 + - type: mrr_at_100 + value: 48.547000000000004 + - type: mrr_at_1000 + value: 48.597 + - type: mrr_at_3 + value: 45.86 + - type: mrr_at_5 + value: 46.949000000000005 + - type: ndcg_at_1 + value: 39.617999999999995 + - type: ndcg_at_10 + value: 47.739 + - type: ndcg_at_100 + value: 51.934999999999995 + - type: ndcg_at_1000 + value: 54.007000000000005 + - type: ndcg_at_3 + value: 43.748 + - type: ndcg_at_5 + value: 45.345 + - type: precision_at_1 + value: 39.617999999999995 + - type: precision_at_10 + value: 8.962 + - type: precision_at_100 + value: 1.436 + - type: precision_at_1000 + value: 0.192 + - type: precision_at_3 + value: 21.083 + - type: precision_at_5 + value: 14.752 + - type: recall_at_1 + value: 31.898 + - type: recall_at_10 + value: 57.587999999999994 + - type: recall_at_100 + value: 75.323 + - type: recall_at_1000 + value: 88.304 + - type: recall_at_3 + value: 45.275 + - type: recall_at_5 + value: 49.99 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackGamingRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 40.458 + - type: map_at_10 + value: 52.942 + - type: map_at_100 + value: 53.974 + - type: map_at_1000 + value: 54.031 + - type: map_at_3 + value: 49.559999999999995 + - type: map_at_5 + value: 51.408 + - type: mrr_at_1 + value: 46.27 + - type: mrr_at_10 + value: 56.31699999999999 + - type: mrr_at_100 + value: 56.95099999999999 + - type: mrr_at_1000 + value: 56.98 + - type: mrr_at_3 + value: 53.835 + - type: mrr_at_5 + value: 55.252 + - type: ndcg_at_1 + value: 46.27 + - type: ndcg_at_10 + value: 58.964000000000006 + - type: ndcg_at_100 + value: 62.875 + - type: ndcg_at_1000 + value: 63.969 + - type: ndcg_at_3 + value: 53.297000000000004 + - type: ndcg_at_5 + value: 55.938 + - type: precision_at_1 + value: 46.27 + - type: precision_at_10 + value: 9.549000000000001 + - type: precision_at_100 + value: 1.2409999999999999 + - type: precision_at_1000 + value: 0.13799999999999998 + - type: precision_at_3 + value: 23.762 + - type: precision_at_5 + value: 16.262999999999998 + - type: recall_at_1 + value: 40.458 + - type: recall_at_10 + value: 73.446 + - type: recall_at_100 + value: 90.12400000000001 + - type: recall_at_1000 + value: 97.795 + - type: recall_at_3 + value: 58.123000000000005 + - type: recall_at_5 + value: 64.68 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackGisRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 27.443 + - type: map_at_10 + value: 36.081 + - type: map_at_100 + value: 37.163000000000004 + - type: map_at_1000 + value: 37.232 + - type: map_at_3 + value: 33.308 + - type: map_at_5 + value: 34.724 + - type: mrr_at_1 + value: 29.492 + - type: mrr_at_10 + value: 38.138 + - type: mrr_at_100 + value: 39.065 + - type: mrr_at_1000 + value: 39.119 + - type: mrr_at_3 + value: 35.593 + - type: mrr_at_5 + value: 36.785000000000004 + - type: ndcg_at_1 + value: 29.492 + - type: ndcg_at_10 + value: 41.134 + - type: ndcg_at_100 + value: 46.300999999999995 + - type: ndcg_at_1000 + value: 48.106 + - type: ndcg_at_3 + value: 35.77 + - type: ndcg_at_5 + value: 38.032 + - type: precision_at_1 + value: 29.492 + - type: precision_at_10 + value: 6.249 + - type: precision_at_100 + value: 0.9299999999999999 + - type: precision_at_1000 + value: 0.11199999999999999 + - type: precision_at_3 + value: 15.065999999999999 + - type: precision_at_5 + value: 10.373000000000001 + - type: recall_at_1 + value: 27.443 + - type: recall_at_10 + value: 54.80199999999999 + - type: recall_at_100 + value: 78.21900000000001 + - type: recall_at_1000 + value: 91.751 + - type: recall_at_3 + value: 40.211000000000006 + - type: recall_at_5 + value: 45.599000000000004 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackMathematicaRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 18.731 + - type: map_at_10 + value: 26.717999999999996 + - type: map_at_100 + value: 27.897 + - type: map_at_1000 + value: 28.029 + - type: map_at_3 + value: 23.91 + - type: map_at_5 + value: 25.455 + - type: mrr_at_1 + value: 23.134 + - type: mrr_at_10 + value: 31.769 + - type: mrr_at_100 + value: 32.634 + - type: mrr_at_1000 + value: 32.707 + - type: mrr_at_3 + value: 28.938999999999997 + - type: mrr_at_5 + value: 30.531000000000002 + - type: ndcg_at_1 + value: 23.134 + - type: ndcg_at_10 + value: 32.249 + - type: ndcg_at_100 + value: 37.678 + - type: ndcg_at_1000 + value: 40.589999999999996 + - type: ndcg_at_3 + value: 26.985999999999997 + - type: ndcg_at_5 + value: 29.457 + - type: precision_at_1 + value: 23.134 + - type: precision_at_10 + value: 5.8709999999999996 + - type: precision_at_100 + value: 0.988 + - type: precision_at_1000 + value: 0.13799999999999998 + - type: precision_at_3 + value: 12.852 + - type: precision_at_5 + value: 9.428 + - type: recall_at_1 + value: 18.731 + - type: recall_at_10 + value: 44.419 + - type: recall_at_100 + value: 67.851 + - type: recall_at_1000 + value: 88.103 + - type: recall_at_3 + value: 29.919 + - type: recall_at_5 + value: 36.230000000000004 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackPhysicsRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 30.324 + - type: map_at_10 + value: 41.265 + - type: map_at_100 + value: 42.559000000000005 + - type: map_at_1000 + value: 42.669000000000004 + - type: map_at_3 + value: 38.138 + - type: map_at_5 + value: 39.881 + - type: mrr_at_1 + value: 36.67 + - type: mrr_at_10 + value: 46.774 + - type: mrr_at_100 + value: 47.554 + - type: mrr_at_1000 + value: 47.593 + - type: mrr_at_3 + value: 44.338 + - type: mrr_at_5 + value: 45.723 + - type: ndcg_at_1 + value: 36.67 + - type: ndcg_at_10 + value: 47.367 + - type: ndcg_at_100 + value: 52.623 + - type: ndcg_at_1000 + value: 54.59 + - type: ndcg_at_3 + value: 42.323 + - type: ndcg_at_5 + value: 44.727 + - type: precision_at_1 + value: 36.67 + - type: precision_at_10 + value: 8.518 + - type: precision_at_100 + value: 1.2890000000000001 + - type: precision_at_1000 + value: 0.163 + - type: precision_at_3 + value: 19.955000000000002 + - type: precision_at_5 + value: 14.11 + - type: recall_at_1 + value: 30.324 + - type: recall_at_10 + value: 59.845000000000006 + - type: recall_at_100 + value: 81.77499999999999 + - type: recall_at_1000 + value: 94.463 + - type: recall_at_3 + value: 46.019 + - type: recall_at_5 + value: 52.163000000000004 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackProgrammersRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 24.229 + - type: map_at_10 + value: 35.004000000000005 + - type: map_at_100 + value: 36.409000000000006 + - type: map_at_1000 + value: 36.521 + - type: map_at_3 + value: 31.793 + - type: map_at_5 + value: 33.432 + - type: mrr_at_1 + value: 30.365 + - type: mrr_at_10 + value: 40.502 + - type: mrr_at_100 + value: 41.372 + - type: mrr_at_1000 + value: 41.435 + - type: mrr_at_3 + value: 37.804 + - type: mrr_at_5 + value: 39.226 + - type: ndcg_at_1 + value: 30.365 + - type: ndcg_at_10 + value: 41.305 + - type: ndcg_at_100 + value: 47.028999999999996 + - type: ndcg_at_1000 + value: 49.375 + - type: ndcg_at_3 + value: 35.85 + - type: ndcg_at_5 + value: 38.12 + - type: precision_at_1 + value: 30.365 + - type: precision_at_10 + value: 7.808 + - type: precision_at_100 + value: 1.228 + - type: precision_at_1000 + value: 0.161 + - type: precision_at_3 + value: 17.352 + - type: precision_at_5 + value: 12.42 + - type: recall_at_1 + value: 24.229 + - type: recall_at_10 + value: 54.673 + - type: recall_at_100 + value: 78.766 + - type: recall_at_1000 + value: 94.625 + - type: recall_at_3 + value: 39.602 + - type: recall_at_5 + value: 45.558 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 26.695 + - type: map_at_10 + value: 36.0895 + - type: map_at_100 + value: 37.309416666666664 + - type: map_at_1000 + value: 37.42558333333334 + - type: map_at_3 + value: 33.19616666666666 + - type: map_at_5 + value: 34.78641666666667 + - type: mrr_at_1 + value: 31.486083333333337 + - type: mrr_at_10 + value: 40.34774999999999 + - type: mrr_at_100 + value: 41.17533333333333 + - type: mrr_at_1000 + value: 41.231583333333326 + - type: mrr_at_3 + value: 37.90075 + - type: mrr_at_5 + value: 39.266999999999996 + - type: ndcg_at_1 + value: 31.486083333333337 + - type: ndcg_at_10 + value: 41.60433333333334 + - type: ndcg_at_100 + value: 46.74525 + - type: ndcg_at_1000 + value: 48.96166666666667 + - type: ndcg_at_3 + value: 36.68825 + - type: ndcg_at_5 + value: 38.966499999999996 + - type: precision_at_1 + value: 31.486083333333337 + - type: precision_at_10 + value: 7.29675 + - type: precision_at_100 + value: 1.1621666666666666 + - type: precision_at_1000 + value: 0.1545 + - type: precision_at_3 + value: 16.8815 + - type: precision_at_5 + value: 11.974583333333333 + - type: recall_at_1 + value: 26.695 + - type: recall_at_10 + value: 53.651916666666665 + - type: recall_at_100 + value: 76.12083333333332 + - type: recall_at_1000 + value: 91.31191666666668 + - type: recall_at_3 + value: 40.03575 + - type: recall_at_5 + value: 45.876666666666665 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackStatsRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 25.668000000000003 + - type: map_at_10 + value: 32.486 + - type: map_at_100 + value: 33.371 + - type: map_at_1000 + value: 33.458 + - type: map_at_3 + value: 30.261 + - type: map_at_5 + value: 31.418000000000003 + - type: mrr_at_1 + value: 28.988000000000003 + - type: mrr_at_10 + value: 35.414 + - type: mrr_at_100 + value: 36.149 + - type: mrr_at_1000 + value: 36.215 + - type: mrr_at_3 + value: 33.333 + - type: mrr_at_5 + value: 34.43 + - type: ndcg_at_1 + value: 28.988000000000003 + - type: ndcg_at_10 + value: 36.732 + - type: ndcg_at_100 + value: 41.331 + - type: ndcg_at_1000 + value: 43.575 + - type: ndcg_at_3 + value: 32.413 + - type: ndcg_at_5 + value: 34.316 + - type: precision_at_1 + value: 28.988000000000003 + - type: precision_at_10 + value: 5.7059999999999995 + - type: precision_at_100 + value: 0.882 + - type: precision_at_1000 + value: 0.11299999999999999 + - type: precision_at_3 + value: 13.65 + - type: precision_at_5 + value: 9.417 + - type: recall_at_1 + value: 25.668000000000003 + - type: recall_at_10 + value: 47.147 + - type: recall_at_100 + value: 68.504 + - type: recall_at_1000 + value: 85.272 + - type: recall_at_3 + value: 35.19 + - type: recall_at_5 + value: 39.925 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackTexRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 17.256 + - type: map_at_10 + value: 24.58 + - type: map_at_100 + value: 25.773000000000003 + - type: map_at_1000 + value: 25.899 + - type: map_at_3 + value: 22.236 + - type: map_at_5 + value: 23.507 + - type: mrr_at_1 + value: 20.957 + - type: mrr_at_10 + value: 28.416000000000004 + - type: mrr_at_100 + value: 29.447000000000003 + - type: mrr_at_1000 + value: 29.524 + - type: mrr_at_3 + value: 26.245 + - type: mrr_at_5 + value: 27.451999999999998 + - type: ndcg_at_1 + value: 20.957 + - type: ndcg_at_10 + value: 29.285 + - type: ndcg_at_100 + value: 35.003 + - type: ndcg_at_1000 + value: 37.881 + - type: ndcg_at_3 + value: 25.063000000000002 + - type: ndcg_at_5 + value: 26.983 + - type: precision_at_1 + value: 20.957 + - type: precision_at_10 + value: 5.344 + - type: precision_at_100 + value: 0.958 + - type: precision_at_1000 + value: 0.13799999999999998 + - type: precision_at_3 + value: 11.918 + - type: precision_at_5 + value: 8.596 + - type: recall_at_1 + value: 17.256 + - type: recall_at_10 + value: 39.644 + - type: recall_at_100 + value: 65.279 + - type: recall_at_1000 + value: 85.693 + - type: recall_at_3 + value: 27.825 + - type: recall_at_5 + value: 32.792 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackUnixRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 26.700000000000003 + - type: map_at_10 + value: 36.205999999999996 + - type: map_at_100 + value: 37.316 + - type: map_at_1000 + value: 37.425000000000004 + - type: map_at_3 + value: 33.166000000000004 + - type: map_at_5 + value: 35.032999999999994 + - type: mrr_at_1 + value: 31.436999999999998 + - type: mrr_at_10 + value: 40.61 + - type: mrr_at_100 + value: 41.415 + - type: mrr_at_1000 + value: 41.48 + - type: mrr_at_3 + value: 37.966 + - type: mrr_at_5 + value: 39.599000000000004 + - type: ndcg_at_1 + value: 31.436999999999998 + - type: ndcg_at_10 + value: 41.771 + - type: ndcg_at_100 + value: 46.784 + - type: ndcg_at_1000 + value: 49.183 + - type: ndcg_at_3 + value: 36.437000000000005 + - type: ndcg_at_5 + value: 39.291 + - type: precision_at_1 + value: 31.436999999999998 + - type: precision_at_10 + value: 6.987 + - type: precision_at_100 + value: 1.072 + - type: precision_at_1000 + value: 0.13899999999999998 + - type: precision_at_3 + value: 16.448999999999998 + - type: precision_at_5 + value: 11.866 + - type: recall_at_1 + value: 26.700000000000003 + - type: recall_at_10 + value: 54.301 + - type: recall_at_100 + value: 75.871 + - type: recall_at_1000 + value: 92.529 + - type: recall_at_3 + value: 40.201 + - type: recall_at_5 + value: 47.208 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackWebmastersRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 24.296 + - type: map_at_10 + value: 33.116 + - type: map_at_100 + value: 34.81 + - type: map_at_1000 + value: 35.032000000000004 + - type: map_at_3 + value: 30.105999999999998 + - type: map_at_5 + value: 31.839000000000002 + - type: mrr_at_1 + value: 29.051 + - type: mrr_at_10 + value: 37.803 + - type: mrr_at_100 + value: 38.856 + - type: mrr_at_1000 + value: 38.903999999999996 + - type: mrr_at_3 + value: 35.211 + - type: mrr_at_5 + value: 36.545 + - type: ndcg_at_1 + value: 29.051 + - type: ndcg_at_10 + value: 39.007 + - type: ndcg_at_100 + value: 45.321 + - type: ndcg_at_1000 + value: 47.665 + - type: ndcg_at_3 + value: 34.1 + - type: ndcg_at_5 + value: 36.437000000000005 + - type: precision_at_1 + value: 29.051 + - type: precision_at_10 + value: 7.668 + - type: precision_at_100 + value: 1.542 + - type: precision_at_1000 + value: 0.24 + - type: precision_at_3 + value: 16.14 + - type: precision_at_5 + value: 11.897 + - type: recall_at_1 + value: 24.296 + - type: recall_at_10 + value: 49.85 + - type: recall_at_100 + value: 78.457 + - type: recall_at_1000 + value: 92.618 + - type: recall_at_3 + value: 36.138999999999996 + - type: recall_at_5 + value: 42.223 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackWordpressRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 20.591 + - type: map_at_10 + value: 28.902 + - type: map_at_100 + value: 29.886000000000003 + - type: map_at_1000 + value: 29.987000000000002 + - type: map_at_3 + value: 26.740000000000002 + - type: map_at_5 + value: 27.976 + - type: mrr_at_1 + value: 22.366 + - type: mrr_at_10 + value: 30.971 + - type: mrr_at_100 + value: 31.865 + - type: mrr_at_1000 + value: 31.930999999999997 + - type: mrr_at_3 + value: 28.927999999999997 + - type: mrr_at_5 + value: 30.231 + - type: ndcg_at_1 + value: 22.366 + - type: ndcg_at_10 + value: 33.641 + - type: ndcg_at_100 + value: 38.477 + - type: ndcg_at_1000 + value: 41.088 + - type: ndcg_at_3 + value: 29.486 + - type: ndcg_at_5 + value: 31.612000000000002 + - type: precision_at_1 + value: 22.366 + - type: precision_at_10 + value: 5.3420000000000005 + - type: precision_at_100 + value: 0.828 + - type: precision_at_1000 + value: 0.11800000000000001 + - type: precision_at_3 + value: 12.939 + - type: precision_at_5 + value: 9.094 + - type: recall_at_1 + value: 20.591 + - type: recall_at_10 + value: 46.052 + - type: recall_at_100 + value: 68.193 + - type: recall_at_1000 + value: 87.638 + - type: recall_at_3 + value: 34.966 + - type: recall_at_5 + value: 40.082 + - task: + type: Retrieval + dataset: + type: climate-fever + name: MTEB ClimateFEVER + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 15.091 + - type: map_at_10 + value: 26.38 + - type: map_at_100 + value: 28.421999999999997 + - type: map_at_1000 + value: 28.621999999999996 + - type: map_at_3 + value: 21.597 + - type: map_at_5 + value: 24.12 + - type: mrr_at_1 + value: 34.266999999999996 + - type: mrr_at_10 + value: 46.864 + - type: mrr_at_100 + value: 47.617 + - type: mrr_at_1000 + value: 47.644 + - type: mrr_at_3 + value: 43.312 + - type: mrr_at_5 + value: 45.501000000000005 + - type: ndcg_at_1 + value: 34.266999999999996 + - type: ndcg_at_10 + value: 36.095 + - type: ndcg_at_100 + value: 43.447 + - type: ndcg_at_1000 + value: 46.661 + - type: ndcg_at_3 + value: 29.337999999999997 + - type: ndcg_at_5 + value: 31.824 + - type: precision_at_1 + value: 34.266999999999996 + - type: precision_at_10 + value: 11.472 + - type: precision_at_100 + value: 1.944 + - type: precision_at_1000 + value: 0.255 + - type: precision_at_3 + value: 21.933 + - type: precision_at_5 + value: 17.224999999999998 + - type: recall_at_1 + value: 15.091 + - type: recall_at_10 + value: 43.022 + - type: recall_at_100 + value: 68.075 + - type: recall_at_1000 + value: 85.76 + - type: recall_at_3 + value: 26.564 + - type: recall_at_5 + value: 33.594 + - task: + type: Retrieval + dataset: + type: dbpedia-entity + name: MTEB DBPedia + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 9.252 + - type: map_at_10 + value: 20.923 + - type: map_at_100 + value: 30.741000000000003 + - type: map_at_1000 + value: 32.542 + - type: map_at_3 + value: 14.442 + - type: map_at_5 + value: 17.399 + - type: mrr_at_1 + value: 70.25 + - type: mrr_at_10 + value: 78.17 + - type: mrr_at_100 + value: 78.444 + - type: mrr_at_1000 + value: 78.45100000000001 + - type: mrr_at_3 + value: 76.958 + - type: mrr_at_5 + value: 77.571 + - type: ndcg_at_1 + value: 58.375 + - type: ndcg_at_10 + value: 44.509 + - type: ndcg_at_100 + value: 49.897999999999996 + - type: ndcg_at_1000 + value: 57.269999999999996 + - type: ndcg_at_3 + value: 48.64 + - type: ndcg_at_5 + value: 46.697 + - type: precision_at_1 + value: 70.25 + - type: precision_at_10 + value: 36.05 + - type: precision_at_100 + value: 11.848 + - type: precision_at_1000 + value: 2.213 + - type: precision_at_3 + value: 52.917 + - type: precision_at_5 + value: 45.7 + - type: recall_at_1 + value: 9.252 + - type: recall_at_10 + value: 27.006999999999998 + - type: recall_at_100 + value: 57.008 + - type: recall_at_1000 + value: 80.697 + - type: recall_at_3 + value: 15.798000000000002 + - type: recall_at_5 + value: 20.4 + - task: + type: Classification + dataset: + type: mteb/emotion + name: MTEB EmotionClassification + config: default + split: test + revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 + metrics: + - type: accuracy + value: 50.88 + - type: f1 + value: 45.545495028653384 + - task: + type: Retrieval + dataset: + type: fever + name: MTEB FEVER + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 75.424 + - type: map_at_10 + value: 83.435 + - type: map_at_100 + value: 83.66900000000001 + - type: map_at_1000 + value: 83.685 + - type: map_at_3 + value: 82.39800000000001 + - type: map_at_5 + value: 83.07 + - type: mrr_at_1 + value: 81.113 + - type: mrr_at_10 + value: 87.77199999999999 + - type: mrr_at_100 + value: 87.862 + - type: mrr_at_1000 + value: 87.86500000000001 + - type: mrr_at_3 + value: 87.17099999999999 + - type: mrr_at_5 + value: 87.616 + - type: ndcg_at_1 + value: 81.113 + - type: ndcg_at_10 + value: 86.909 + - type: ndcg_at_100 + value: 87.746 + - type: ndcg_at_1000 + value: 88.017 + - type: ndcg_at_3 + value: 85.368 + - type: ndcg_at_5 + value: 86.28099999999999 + - type: precision_at_1 + value: 81.113 + - type: precision_at_10 + value: 10.363 + - type: precision_at_100 + value: 1.102 + - type: precision_at_1000 + value: 0.11399999999999999 + - type: precision_at_3 + value: 32.507999999999996 + - type: precision_at_5 + value: 20.138 + - type: recall_at_1 + value: 75.424 + - type: recall_at_10 + value: 93.258 + - type: recall_at_100 + value: 96.545 + - type: recall_at_1000 + value: 98.284 + - type: recall_at_3 + value: 89.083 + - type: recall_at_5 + value: 91.445 + - task: + type: Retrieval + dataset: + type: fiqa + name: MTEB FiQA2018 + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 22.532 + - type: map_at_10 + value: 37.141999999999996 + - type: map_at_100 + value: 39.162 + - type: map_at_1000 + value: 39.322 + - type: map_at_3 + value: 32.885 + - type: map_at_5 + value: 35.093999999999994 + - type: mrr_at_1 + value: 44.29 + - type: mrr_at_10 + value: 53.516 + - type: mrr_at_100 + value: 54.24 + - type: mrr_at_1000 + value: 54.273 + - type: mrr_at_3 + value: 51.286 + - type: mrr_at_5 + value: 52.413 + - type: ndcg_at_1 + value: 44.29 + - type: ndcg_at_10 + value: 45.268 + - type: ndcg_at_100 + value: 52.125 + - type: ndcg_at_1000 + value: 54.778000000000006 + - type: ndcg_at_3 + value: 41.829 + - type: ndcg_at_5 + value: 42.525 + - type: precision_at_1 + value: 44.29 + - type: precision_at_10 + value: 12.5 + - type: precision_at_100 + value: 1.9720000000000002 + - type: precision_at_1000 + value: 0.245 + - type: precision_at_3 + value: 28.035 + - type: precision_at_5 + value: 20.093 + - type: recall_at_1 + value: 22.532 + - type: recall_at_10 + value: 52.419000000000004 + - type: recall_at_100 + value: 77.43299999999999 + - type: recall_at_1000 + value: 93.379 + - type: recall_at_3 + value: 38.629000000000005 + - type: recall_at_5 + value: 43.858000000000004 + - task: + type: Retrieval + dataset: + type: hotpotqa + name: MTEB HotpotQA + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 39.359 + - type: map_at_10 + value: 63.966 + - type: map_at_100 + value: 64.87 + - type: map_at_1000 + value: 64.92599999999999 + - type: map_at_3 + value: 60.409 + - type: map_at_5 + value: 62.627 + - type: mrr_at_1 + value: 78.717 + - type: mrr_at_10 + value: 84.468 + - type: mrr_at_100 + value: 84.655 + - type: mrr_at_1000 + value: 84.661 + - type: mrr_at_3 + value: 83.554 + - type: mrr_at_5 + value: 84.133 + - type: ndcg_at_1 + value: 78.717 + - type: ndcg_at_10 + value: 72.03399999999999 + - type: ndcg_at_100 + value: 75.158 + - type: ndcg_at_1000 + value: 76.197 + - type: ndcg_at_3 + value: 67.049 + - type: ndcg_at_5 + value: 69.808 + - type: precision_at_1 + value: 78.717 + - type: precision_at_10 + value: 15.201 + - type: precision_at_100 + value: 1.764 + - type: precision_at_1000 + value: 0.19 + - type: precision_at_3 + value: 43.313 + - type: precision_at_5 + value: 28.165000000000003 + - type: recall_at_1 + value: 39.359 + - type: recall_at_10 + value: 76.003 + - type: recall_at_100 + value: 88.197 + - type: recall_at_1000 + value: 95.003 + - type: recall_at_3 + value: 64.97 + - type: recall_at_5 + value: 70.41199999999999 + - task: + type: Classification + dataset: + type: mteb/imdb + name: MTEB ImdbClassification + config: default + split: test + revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 + metrics: + - type: accuracy + value: 92.83200000000001 + - type: ap + value: 89.33560571859861 + - type: f1 + value: 92.82322915005167 + - task: + type: Retrieval + dataset: + type: msmarco + name: MTEB MSMARCO + config: default + split: dev + revision: None + metrics: + - type: map_at_1 + value: 21.983 + - type: map_at_10 + value: 34.259 + - type: map_at_100 + value: 35.432 + - type: map_at_1000 + value: 35.482 + - type: map_at_3 + value: 30.275999999999996 + - type: map_at_5 + value: 32.566 + - type: mrr_at_1 + value: 22.579 + - type: mrr_at_10 + value: 34.882999999999996 + - type: mrr_at_100 + value: 35.984 + - type: mrr_at_1000 + value: 36.028 + - type: mrr_at_3 + value: 30.964999999999996 + - type: mrr_at_5 + value: 33.245000000000005 + - type: ndcg_at_1 + value: 22.564 + - type: ndcg_at_10 + value: 41.258 + - type: ndcg_at_100 + value: 46.824 + - type: ndcg_at_1000 + value: 48.037 + - type: ndcg_at_3 + value: 33.17 + - type: ndcg_at_5 + value: 37.263000000000005 + - type: precision_at_1 + value: 22.564 + - type: precision_at_10 + value: 6.572 + - type: precision_at_100 + value: 0.935 + - type: precision_at_1000 + value: 0.104 + - type: precision_at_3 + value: 14.130999999999998 + - type: precision_at_5 + value: 10.544 + - type: recall_at_1 + value: 21.983 + - type: recall_at_10 + value: 62.775000000000006 + - type: recall_at_100 + value: 88.389 + - type: recall_at_1000 + value: 97.603 + - type: recall_at_3 + value: 40.878 + - type: recall_at_5 + value: 50.690000000000005 + - task: + type: Classification + dataset: + type: mteb/mtop_domain + name: MTEB MTOPDomainClassification (en) + config: en + split: test + revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf + metrics: + - type: accuracy + value: 93.95120839033288 + - type: f1 + value: 93.73824125055208 + - task: + type: Classification + dataset: + type: mteb/mtop_intent + name: MTEB MTOPIntentClassification (en) + config: en + split: test + revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba + metrics: + - type: accuracy + value: 76.78978568171455 + - type: f1 + value: 57.50180552858304 + - task: + type: Classification + dataset: + type: mteb/amazon_massive_intent + name: MTEB MassiveIntentClassification (en) + config: en + split: test + revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 + metrics: + - type: accuracy + value: 76.24411566913248 + - type: f1 + value: 74.37851403532832 + - task: + type: Classification + dataset: + type: mteb/amazon_massive_scenario + name: MTEB MassiveScenarioClassification (en) + config: en + split: test + revision: 7d571f92784cd94a019292a1f45445077d0ef634 + metrics: + - type: accuracy + value: 79.94620040349699 + - type: f1 + value: 80.21293397970435 + - task: + type: Clustering + dataset: + type: mteb/medrxiv-clustering-p2p + name: MTEB MedrxivClusteringP2P + config: default + split: test + revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 + metrics: + - type: v_measure + value: 33.44403096245675 + - task: + type: Clustering + dataset: + type: mteb/medrxiv-clustering-s2s + name: MTEB MedrxivClusteringS2S + config: default + split: test + revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 + metrics: + - type: v_measure + value: 31.659594631336812 + - task: + type: Reranking + dataset: + type: mteb/mind_small + name: MTEB MindSmallReranking + config: default + split: test + revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 + metrics: + - type: map + value: 32.53833075108798 + - type: mrr + value: 33.78840823218308 + - task: + type: Retrieval + dataset: + type: nfcorpus + name: MTEB NFCorpus + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 7.185999999999999 + - type: map_at_10 + value: 15.193999999999999 + - type: map_at_100 + value: 19.538 + - type: map_at_1000 + value: 21.178 + - type: map_at_3 + value: 11.208 + - type: map_at_5 + value: 12.745999999999999 + - type: mrr_at_1 + value: 48.916 + - type: mrr_at_10 + value: 58.141 + - type: mrr_at_100 + value: 58.656 + - type: mrr_at_1000 + value: 58.684999999999995 + - type: mrr_at_3 + value: 55.521 + - type: mrr_at_5 + value: 57.239 + - type: ndcg_at_1 + value: 47.059 + - type: ndcg_at_10 + value: 38.644 + - type: ndcg_at_100 + value: 36.272999999999996 + - type: ndcg_at_1000 + value: 44.996 + - type: ndcg_at_3 + value: 43.293 + - type: ndcg_at_5 + value: 40.819 + - type: precision_at_1 + value: 48.916 + - type: precision_at_10 + value: 28.607 + - type: precision_at_100 + value: 9.195 + - type: precision_at_1000 + value: 2.225 + - type: precision_at_3 + value: 40.454 + - type: precision_at_5 + value: 34.985 + - type: recall_at_1 + value: 7.185999999999999 + - type: recall_at_10 + value: 19.654 + - type: recall_at_100 + value: 37.224000000000004 + - type: recall_at_1000 + value: 68.663 + - type: recall_at_3 + value: 12.158 + - type: recall_at_5 + value: 14.674999999999999 + - task: + type: Retrieval + dataset: + type: nq + name: MTEB NQ + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 31.552000000000003 + - type: map_at_10 + value: 47.75 + - type: map_at_100 + value: 48.728 + - type: map_at_1000 + value: 48.754 + - type: map_at_3 + value: 43.156 + - type: map_at_5 + value: 45.883 + - type: mrr_at_1 + value: 35.66 + - type: mrr_at_10 + value: 50.269 + - type: mrr_at_100 + value: 50.974 + - type: mrr_at_1000 + value: 50.991 + - type: mrr_at_3 + value: 46.519 + - type: mrr_at_5 + value: 48.764 + - type: ndcg_at_1 + value: 35.632000000000005 + - type: ndcg_at_10 + value: 55.786 + - type: ndcg_at_100 + value: 59.748999999999995 + - type: ndcg_at_1000 + value: 60.339 + - type: ndcg_at_3 + value: 47.292 + - type: ndcg_at_5 + value: 51.766999999999996 + - type: precision_at_1 + value: 35.632000000000005 + - type: precision_at_10 + value: 9.267 + - type: precision_at_100 + value: 1.149 + - type: precision_at_1000 + value: 0.12 + - type: precision_at_3 + value: 21.601 + - type: precision_at_5 + value: 15.539 + - type: recall_at_1 + value: 31.552000000000003 + - type: recall_at_10 + value: 77.62400000000001 + - type: recall_at_100 + value: 94.527 + - type: recall_at_1000 + value: 98.919 + - type: recall_at_3 + value: 55.898 + - type: recall_at_5 + value: 66.121 + - task: + type: Retrieval + dataset: + type: quora + name: MTEB QuoraRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 71.414 + - type: map_at_10 + value: 85.37400000000001 + - type: map_at_100 + value: 86.01100000000001 + - type: map_at_1000 + value: 86.027 + - type: map_at_3 + value: 82.562 + - type: map_at_5 + value: 84.284 + - type: mrr_at_1 + value: 82.24000000000001 + - type: mrr_at_10 + value: 88.225 + - type: mrr_at_100 + value: 88.324 + - type: mrr_at_1000 + value: 88.325 + - type: mrr_at_3 + value: 87.348 + - type: mrr_at_5 + value: 87.938 + - type: ndcg_at_1 + value: 82.24000000000001 + - type: ndcg_at_10 + value: 88.97699999999999 + - type: ndcg_at_100 + value: 90.16 + - type: ndcg_at_1000 + value: 90.236 + - type: ndcg_at_3 + value: 86.371 + - type: ndcg_at_5 + value: 87.746 + - type: precision_at_1 + value: 82.24000000000001 + - type: precision_at_10 + value: 13.481000000000002 + - type: precision_at_100 + value: 1.534 + - type: precision_at_1000 + value: 0.157 + - type: precision_at_3 + value: 37.86 + - type: precision_at_5 + value: 24.738 + - type: recall_at_1 + value: 71.414 + - type: recall_at_10 + value: 95.735 + - type: recall_at_100 + value: 99.696 + - type: recall_at_1000 + value: 99.979 + - type: recall_at_3 + value: 88.105 + - type: recall_at_5 + value: 92.17999999999999 + - task: + type: Clustering + dataset: + type: mteb/reddit-clustering + name: MTEB RedditClustering + config: default + split: test + revision: 24640382cdbf8abc73003fb0fa6d111a705499eb + metrics: + - type: v_measure + value: 60.22146692057259 + - task: + type: Clustering + dataset: + type: mteb/reddit-clustering-p2p + name: MTEB RedditClusteringP2P + config: default + split: test + revision: 282350215ef01743dc01b456c7f5241fa8937f16 + metrics: + - type: v_measure + value: 65.29273320614578 + - task: + type: Retrieval + dataset: + type: scidocs + name: MTEB SCIDOCS + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 5.023 + - type: map_at_10 + value: 14.161000000000001 + - type: map_at_100 + value: 16.68 + - type: map_at_1000 + value: 17.072000000000003 + - type: map_at_3 + value: 9.763 + - type: map_at_5 + value: 11.977 + - type: mrr_at_1 + value: 24.8 + - type: mrr_at_10 + value: 37.602999999999994 + - type: mrr_at_100 + value: 38.618 + - type: mrr_at_1000 + value: 38.659 + - type: mrr_at_3 + value: 34.117 + - type: mrr_at_5 + value: 36.082 + - type: ndcg_at_1 + value: 24.8 + - type: ndcg_at_10 + value: 23.316 + - type: ndcg_at_100 + value: 32.613 + - type: ndcg_at_1000 + value: 38.609 + - type: ndcg_at_3 + value: 21.697 + - type: ndcg_at_5 + value: 19.241 + - type: precision_at_1 + value: 24.8 + - type: precision_at_10 + value: 12.36 + - type: precision_at_100 + value: 2.593 + - type: precision_at_1000 + value: 0.402 + - type: precision_at_3 + value: 20.767 + - type: precision_at_5 + value: 17.34 + - type: recall_at_1 + value: 5.023 + - type: recall_at_10 + value: 25.069999999999997 + - type: recall_at_100 + value: 52.563 + - type: recall_at_1000 + value: 81.525 + - type: recall_at_3 + value: 12.613 + - type: recall_at_5 + value: 17.583 + - task: + type: STS + dataset: + type: mteb/sickr-sts + name: MTEB SICK-R + config: default + split: test + revision: a6ea5a8cab320b040a23452cc28066d9beae2cee + metrics: + - type: cos_sim_pearson + value: 87.71506247604255 + - type: cos_sim_spearman + value: 82.91813463738802 + - type: euclidean_pearson + value: 85.5154616194479 + - type: euclidean_spearman + value: 82.91815254466314 + - type: manhattan_pearson + value: 85.5280917850374 + - type: manhattan_spearman + value: 82.92276537286398 + - task: + type: STS + dataset: + type: mteb/sts12-sts + name: MTEB STS12 + config: default + split: test + revision: a0d554a64d88156834ff5ae9920b964011b16384 + metrics: + - type: cos_sim_pearson + value: 87.43772054228462 + - type: cos_sim_spearman + value: 78.75750601716682 + - type: euclidean_pearson + value: 85.76074482955764 + - type: euclidean_spearman + value: 78.75651057223058 + - type: manhattan_pearson + value: 85.73390291701668 + - type: manhattan_spearman + value: 78.72699385957797 + - task: + type: STS + dataset: + type: mteb/sts13-sts + name: MTEB STS13 + config: default + split: test + revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca + metrics: + - type: cos_sim_pearson + value: 89.58144067172472 + - type: cos_sim_spearman + value: 90.3524512966946 + - type: euclidean_pearson + value: 89.71365391594237 + - type: euclidean_spearman + value: 90.35239632843408 + - type: manhattan_pearson + value: 89.66905421746478 + - type: manhattan_spearman + value: 90.31508211683513 + - task: + type: STS + dataset: + type: mteb/sts14-sts + name: MTEB STS14 + config: default + split: test + revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 + metrics: + - type: cos_sim_pearson + value: 87.77692637102102 + - type: cos_sim_spearman + value: 85.45710562643485 + - type: euclidean_pearson + value: 87.42456979928723 + - type: euclidean_spearman + value: 85.45709386240908 + - type: manhattan_pearson + value: 87.40754529526272 + - type: manhattan_spearman + value: 85.44834854173303 + - task: + type: STS + dataset: + type: mteb/sts15-sts + name: MTEB STS15 + config: default + split: test + revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 + metrics: + - type: cos_sim_pearson + value: 88.28491331695997 + - type: cos_sim_spearman + value: 89.62037029566964 + - type: euclidean_pearson + value: 89.02479391362826 + - type: euclidean_spearman + value: 89.62036733618466 + - type: manhattan_pearson + value: 89.00394756040342 + - type: manhattan_spearman + value: 89.60867744215236 + - task: + type: STS + dataset: + type: mteb/sts16-sts + name: MTEB STS16 + config: default + split: test + revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 + metrics: + - type: cos_sim_pearson + value: 85.08911381280191 + - type: cos_sim_spearman + value: 86.5791780765767 + - type: euclidean_pearson + value: 86.16063473577861 + - type: euclidean_spearman + value: 86.57917745378766 + - type: manhattan_pearson + value: 86.13677924604175 + - type: manhattan_spearman + value: 86.56115615768685 + - task: + type: STS + dataset: + type: mteb/sts17-crosslingual-sts + name: MTEB STS17 (en-en) + config: en-en + split: test + revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d + metrics: + - type: cos_sim_pearson + value: 89.58029496205235 + - type: cos_sim_spearman + value: 89.49551253826998 + - type: euclidean_pearson + value: 90.13714840963748 + - type: euclidean_spearman + value: 89.49551253826998 + - type: manhattan_pearson + value: 90.13039633601363 + - type: manhattan_spearman + value: 89.4513453745516 + - task: + type: STS + dataset: + type: mteb/sts22-crosslingual-sts + name: MTEB STS22 (en) + config: en + split: test + revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 + metrics: + - type: cos_sim_pearson + value: 69.01546399666435 + - type: cos_sim_spearman + value: 69.33824484595624 + - type: euclidean_pearson + value: 70.76511642998874 + - type: euclidean_spearman + value: 69.33824484595624 + - type: manhattan_pearson + value: 70.84320785047453 + - type: manhattan_spearman + value: 69.54233632223537 + - task: + type: STS + dataset: + type: mteb/stsbenchmark-sts + name: MTEB STSBenchmark + config: default + split: test + revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 + metrics: + - type: cos_sim_pearson + value: 87.26389196390119 + - type: cos_sim_spearman + value: 89.09721478341385 + - type: euclidean_pearson + value: 88.97208685922517 + - type: euclidean_spearman + value: 89.09720927308881 + - type: manhattan_pearson + value: 88.97513670502573 + - type: manhattan_spearman + value: 89.07647853984004 + - task: + type: Reranking + dataset: + type: mteb/scidocs-reranking + name: MTEB SciDocsRR + config: default + split: test + revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab + metrics: + - type: map + value: 87.53075025771936 + - type: mrr + value: 96.24327651288436 + - task: + type: Retrieval + dataset: + type: scifact + name: MTEB SciFact + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 60.428000000000004 + - type: map_at_10 + value: 70.088 + - type: map_at_100 + value: 70.589 + - type: map_at_1000 + value: 70.614 + - type: map_at_3 + value: 67.191 + - type: map_at_5 + value: 68.515 + - type: mrr_at_1 + value: 63.333 + - type: mrr_at_10 + value: 71.13000000000001 + - type: mrr_at_100 + value: 71.545 + - type: mrr_at_1000 + value: 71.569 + - type: mrr_at_3 + value: 68.944 + - type: mrr_at_5 + value: 70.078 + - type: ndcg_at_1 + value: 63.333 + - type: ndcg_at_10 + value: 74.72800000000001 + - type: ndcg_at_100 + value: 76.64999999999999 + - type: ndcg_at_1000 + value: 77.176 + - type: ndcg_at_3 + value: 69.659 + - type: ndcg_at_5 + value: 71.626 + - type: precision_at_1 + value: 63.333 + - type: precision_at_10 + value: 10 + - type: precision_at_100 + value: 1.09 + - type: precision_at_1000 + value: 0.11299999999999999 + - type: precision_at_3 + value: 27.111 + - type: precision_at_5 + value: 17.666999999999998 + - type: recall_at_1 + value: 60.428000000000004 + - type: recall_at_10 + value: 87.98899999999999 + - type: recall_at_100 + value: 96.167 + - type: recall_at_1000 + value: 100 + - type: recall_at_3 + value: 74.006 + - type: recall_at_5 + value: 79.05 + - task: + type: PairClassification + dataset: + type: mteb/sprintduplicatequestions-pairclassification + name: MTEB SprintDuplicateQuestions + config: default + split: test + revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 + metrics: + - type: cos_sim_accuracy + value: 99.87326732673267 + - type: cos_sim_ap + value: 96.81770773701805 + - type: cos_sim_f1 + value: 93.6318407960199 + - type: cos_sim_precision + value: 93.16831683168317 + - type: cos_sim_recall + value: 94.1 + - type: dot_accuracy + value: 99.87326732673267 + - type: dot_ap + value: 96.8174218946665 + - type: dot_f1 + value: 93.6318407960199 + - type: dot_precision + value: 93.16831683168317 + - type: dot_recall + value: 94.1 + - type: euclidean_accuracy + value: 99.87326732673267 + - type: euclidean_ap + value: 96.81770773701807 + - type: euclidean_f1 + value: 93.6318407960199 + - type: euclidean_precision + value: 93.16831683168317 + - type: euclidean_recall + value: 94.1 + - type: manhattan_accuracy + value: 99.87227722772278 + - type: manhattan_ap + value: 96.83164126821747 + - type: manhattan_f1 + value: 93.54677338669335 + - type: manhattan_precision + value: 93.5935935935936 + - type: manhattan_recall + value: 93.5 + - type: max_accuracy + value: 99.87326732673267 + - type: max_ap + value: 96.83164126821747 + - type: max_f1 + value: 93.6318407960199 + - task: + type: Clustering + dataset: + type: mteb/stackexchange-clustering + name: MTEB StackExchangeClustering + config: default + split: test + revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 + metrics: + - type: v_measure + value: 65.6212042420246 + - task: + type: Clustering + dataset: + type: mteb/stackexchange-clustering-p2p + name: MTEB StackExchangeClusteringP2P + config: default + split: test + revision: 815ca46b2622cec33ccafc3735d572c266efdb44 + metrics: + - type: v_measure + value: 35.779230635982564 + - task: + type: Reranking + dataset: + type: mteb/stackoverflowdupquestions-reranking + name: MTEB StackOverflowDupQuestions + config: default + split: test + revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 + metrics: + - type: map + value: 55.217701909036286 + - type: mrr + value: 56.17658995416349 + - task: + type: Summarization + dataset: + type: mteb/summeval + name: MTEB SummEval + config: default + split: test + revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c + metrics: + - type: cos_sim_pearson + value: 30.954206018888453 + - type: cos_sim_spearman + value: 32.71062599450096 + - type: dot_pearson + value: 30.95420929056943 + - type: dot_spearman + value: 32.71062599450096 + - task: + type: Retrieval + dataset: + type: trec-covid + name: MTEB TRECCOVID + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 0.22699999999999998 + - type: map_at_10 + value: 1.924 + - type: map_at_100 + value: 10.525 + - type: map_at_1000 + value: 24.973 + - type: map_at_3 + value: 0.638 + - type: map_at_5 + value: 1.0659999999999998 + - type: mrr_at_1 + value: 84 + - type: mrr_at_10 + value: 91.067 + - type: mrr_at_100 + value: 91.067 + - type: mrr_at_1000 + value: 91.067 + - type: mrr_at_3 + value: 90.667 + - type: mrr_at_5 + value: 91.067 + - type: ndcg_at_1 + value: 81 + - type: ndcg_at_10 + value: 75.566 + - type: ndcg_at_100 + value: 56.387 + - type: ndcg_at_1000 + value: 49.834 + - type: ndcg_at_3 + value: 80.899 + - type: ndcg_at_5 + value: 80.75099999999999 + - type: precision_at_1 + value: 84 + - type: precision_at_10 + value: 79 + - type: precision_at_100 + value: 57.56 + - type: precision_at_1000 + value: 21.8 + - type: precision_at_3 + value: 84.667 + - type: precision_at_5 + value: 85.2 + - type: recall_at_1 + value: 0.22699999999999998 + - type: recall_at_10 + value: 2.136 + - type: recall_at_100 + value: 13.861 + - type: recall_at_1000 + value: 46.299 + - type: recall_at_3 + value: 0.6649999999999999 + - type: recall_at_5 + value: 1.145 + - task: + type: Retrieval + dataset: + type: webis-touche2020 + name: MTEB Touche2020 + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 2.752 + - type: map_at_10 + value: 9.951 + - type: map_at_100 + value: 16.794999999999998 + - type: map_at_1000 + value: 18.251 + - type: map_at_3 + value: 5.288 + - type: map_at_5 + value: 6.954000000000001 + - type: mrr_at_1 + value: 38.775999999999996 + - type: mrr_at_10 + value: 50.458000000000006 + - type: mrr_at_100 + value: 51.324999999999996 + - type: mrr_at_1000 + value: 51.339999999999996 + - type: mrr_at_3 + value: 46.939 + - type: mrr_at_5 + value: 47.857 + - type: ndcg_at_1 + value: 36.735 + - type: ndcg_at_10 + value: 25.198999999999998 + - type: ndcg_at_100 + value: 37.938 + - type: ndcg_at_1000 + value: 49.145 + - type: ndcg_at_3 + value: 29.348000000000003 + - type: ndcg_at_5 + value: 25.804 + - type: precision_at_1 + value: 38.775999999999996 + - type: precision_at_10 + value: 22.041 + - type: precision_at_100 + value: 7.939 + - type: precision_at_1000 + value: 1.555 + - type: precision_at_3 + value: 29.932 + - type: precision_at_5 + value: 24.490000000000002 + - type: recall_at_1 + value: 2.752 + - type: recall_at_10 + value: 16.197 + - type: recall_at_100 + value: 49.166 + - type: recall_at_1000 + value: 84.18900000000001 + - type: recall_at_3 + value: 6.438000000000001 + - type: recall_at_5 + value: 9.093 + - task: + type: Classification + dataset: + type: mteb/toxic_conversations_50k + name: MTEB ToxicConversationsClassification + config: default + split: test + revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c + metrics: + - type: accuracy + value: 71.47980000000001 + - type: ap + value: 14.605194452178754 + - type: f1 + value: 55.07362924988948 + - task: + type: Classification + dataset: + type: mteb/tweet_sentiment_extraction + name: MTEB TweetSentimentExtractionClassification + config: default + split: test + revision: d604517c81ca91fe16a244d1248fc021f9ecee7a + metrics: + - type: accuracy + value: 59.708545557441994 + - type: f1 + value: 60.04751270975683 + - task: + type: Clustering + dataset: + type: mteb/twentynewsgroups-clustering + name: MTEB TwentyNewsgroupsClustering + config: default + split: test + revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 + metrics: + - type: v_measure + value: 53.21105960597211 + - task: + type: PairClassification + dataset: + type: mteb/twittersemeval2015-pairclassification + name: MTEB TwitterSemEval2015 + config: default + split: test + revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 + metrics: + - type: cos_sim_accuracy + value: 87.58419264469214 + - type: cos_sim_ap + value: 78.55300004517404 + - type: cos_sim_f1 + value: 71.49673530889001 + - type: cos_sim_precision + value: 68.20795400095831 + - type: cos_sim_recall + value: 75.11873350923483 + - type: dot_accuracy + value: 87.58419264469214 + - type: dot_ap + value: 78.55297659559511 + - type: dot_f1 + value: 71.49673530889001 + - type: dot_precision + value: 68.20795400095831 + - type: dot_recall + value: 75.11873350923483 + - type: euclidean_accuracy + value: 87.58419264469214 + - type: euclidean_ap + value: 78.55300477331477 + - type: euclidean_f1 + value: 71.49673530889001 + - type: euclidean_precision + value: 68.20795400095831 + - type: euclidean_recall + value: 75.11873350923483 + - type: manhattan_accuracy + value: 87.5663110210407 + - type: manhattan_ap + value: 78.49982050876562 + - type: manhattan_f1 + value: 71.35488740722104 + - type: manhattan_precision + value: 68.18946862226497 + - type: manhattan_recall + value: 74.82849604221636 + - type: max_accuracy + value: 87.58419264469214 + - type: max_ap + value: 78.55300477331477 + - type: max_f1 + value: 71.49673530889001 + - task: + type: PairClassification + dataset: + type: mteb/twitterurlcorpus-pairclassification + name: MTEB TwitterURLCorpus + config: default + split: test + revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf + metrics: + - type: cos_sim_accuracy + value: 89.09069740365584 + - type: cos_sim_ap + value: 86.22749303724757 + - type: cos_sim_f1 + value: 78.36863452005407 + - type: cos_sim_precision + value: 76.49560117302053 + - type: cos_sim_recall + value: 80.33569448721897 + - type: dot_accuracy + value: 89.09069740365584 + - type: dot_ap + value: 86.22750233655673 + - type: dot_f1 + value: 78.36863452005407 + - type: dot_precision + value: 76.49560117302053 + - type: dot_recall + value: 80.33569448721897 + - type: euclidean_accuracy + value: 89.09069740365584 + - type: euclidean_ap + value: 86.22749355597347 + - type: euclidean_f1 + value: 78.36863452005407 + - type: euclidean_precision + value: 76.49560117302053 + - type: euclidean_recall + value: 80.33569448721897 + - type: manhattan_accuracy + value: 89.08293553770326 + - type: manhattan_ap + value: 86.21913616084771 + - type: manhattan_f1 + value: 78.3907031479847 + - type: manhattan_precision + value: 75.0352013517319 + - type: manhattan_recall + value: 82.06036341238065 + - type: max_accuracy + value: 89.09069740365584 + - type: max_ap + value: 86.22750233655673 + - type: max_f1 + value: 78.3907031479847 +license: apache-2.0 +language: +- en +library_name: sentence-transformers +pipeline_tag: feature-extraction +--- + +

+ +

+ +

+ +

+The crispy sentence embedding family from Mixedbread. +

+ +# mxbai-embed-large-v1 + +Here, we provide several ways to produce sentence embeddings. Please note that you have to provide the prompt `Represent this sentence for searching relevant passages:` for query if you want to use it for retrieval. Besides that you don't need any prompt. Our model also supports [Matryoshka Representation Learning and binary quantization](https://www.mixedbread.ai/blog/binary-mrl). + +## Quickstart + +Here, we provide several ways to produce sentence embeddings. Please note that you have to provide the prompt `Represent this sentence for searching relevant passages:` for query if you want to use it for retrieval. Besides that you don't need any prompt. + +### sentence-transformers + +``` +python -m pip install -U sentence-transformers +``` + +```python +from sentence_transformers import SentenceTransformer +from sentence_transformers.util import cos_sim +from sentence_transformers.quantization import quantize_embeddings + +# 1. Specify preffered dimensions +dimensions = 512 + +# 2. load model +model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1", truncate_dim=dimensions) + +# For retrieval you need to pass this prompt. +query = 'Represent this sentence for searching relevant passages: A man is eating a piece of bread' + +docs = [ + query, + "A man is eating food.", + "A man is eating pasta.", + "The girl is carrying a baby.", + "A man is riding a horse.", +] + +# 2. Encode +embeddings = model.encode(docs) + +# Optional: Quantize the embeddings +binary_embeddings = quantize_embeddings(embeddings, precision="ubinary") + +similarities = cos_sim(embeddings[0], embeddings[1:]) +print('similarities:', similarities) + + +``` +### Transformers + +```python +from typing import Dict + +import torch +import numpy as np +from transformers import AutoModel, AutoTokenizer +from sentence_transformers.util import cos_sim + +# For retrieval you need to pass this prompt. Please find our more in our blog post. +def transform_query(query: str) -> str: + """ For retrieval, add the prompt for query (not for documents). + """ + return f'Represent this sentence for searching relevant passages: {query}' + +# The model works really well with cls pooling (default) but also with mean pooling. +def pooling(outputs: torch.Tensor, inputs: Dict, strategy: str = 'cls') -> np.ndarray: + if strategy == 'cls': + outputs = outputs[:, 0] + elif strategy == 'mean': + outputs = torch.sum( + outputs * inputs["attention_mask"][:, :, None], dim=1) / torch.sum(inputs["attention_mask"], dim=1, keepdim=True) + else: + raise NotImplementedError + return outputs.detach().cpu().numpy() + +# 1. load model +model_id = 'mixedbread-ai/mxbai-embed-large-v1' +tokenizer = AutoTokenizer.from_pretrained(model_id) +model = AutoModel.from_pretrained(model_id).cuda() + + +docs = [ + transform_query('A man is eating a piece of bread'), + "A man is eating food.", + "A man is eating pasta.", + "The girl is carrying a baby.", + "A man is riding a horse.", +] + +# 2. encode +inputs = tokenizer(docs, padding=True, return_tensors='pt') +for k, v in inputs.items(): + inputs[k] = v.cuda() +outputs = model(**inputs).last_hidden_state +embeddings = pooling(outputs, inputs, 'cls') + +similarities = cos_sim(embeddings[0], embeddings[1:]) +print('similarities:', similarities) +``` + +### Transformers.js + +If you haven't already, you can install the [Transformers.js](https://huggingface.co./docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: +```bash +npm i @xenova/transformers +``` + +You can then use the model to compute embeddings like this: + +```js +import { pipeline, cos_sim } from '@xenova/transformers'; + +// Create a feature extraction pipeline +const extractor = await pipeline('feature-extraction', 'mixedbread-ai/mxbai-embed-large-v1', { + quantized: false, // Comment out this line to use the quantized version +}); + +// Generate sentence embeddings +const docs = [ + 'Represent this sentence for searching relevant passages: A man is eating a piece of bread', + 'A man is eating food.', + 'A man is eating pasta.', + 'The girl is carrying a baby.', + 'A man is riding a horse.', +] +const output = await extractor(docs, { pooling: 'cls' }); + +// Compute similarity scores +const [source_embeddings, ...document_embeddings ] = output.tolist(); +const similarities = document_embeddings.map(x => cos_sim(source_embeddings, x)); +console.log(similarities); // [0.7919578577247139, 0.6369278664248345, 0.16512018371357193, 0.3620778366720027] +``` + +### Using API + +You can use the model via our API as follows: + +```python +from mixedbread_ai.client import MixedbreadAI, EncodingFormat +from sklearn.metrics.pairwise import cosine_similarity +import os + +mxbai = MixedbreadAI(api_key="{MIXEDBREAD_API_KEY}") + +english_sentences = [ + 'What is the capital of Australia?', + 'Canberra is the capital of Australia.' +] + +res = mxbai.embeddings( + input=english_sentences, + model="mixedbread-ai/mxbai-embed-large-v1", + normalized=True, + encoding_format=[EncodingFormat.FLOAT, EncodingFormat.UBINARY, EncodingFormat.INT_8], + dimensions=512 +) + +encoded_embeddings = res.data[0].embedding +print(res.dimensions, encoded_embeddings.ubinary, encoded_embeddings.float_, encoded_embeddings.int_8) +``` + +The API comes with native int8 and binary quantization support! Check out the [docs](https://mixedbread.ai/docs) for more information. + +## Evaluation +As of March 2024, our model archives SOTA performance for Bert-large sized models on the [MTEB](https://huggingface.co./spaces/mteb/leaderboard). It ourperforms commercial models like OpenAIs text-embedding-3-large and matches the performance of model 20x it's size like the [echo-mistral-7b](https://huggingface.co./jspringer/echo-mistral-7b-instruct-lasttoken). Our model was trained with no overlap of the MTEB data, which indicates that our model generalizes well across several domains, tasks and text length. We know there are some limitations with this model, which will be fixed in v2. + + +| Model | Avg (56 datasets) | Classification (12 datasets) | Clustering (11 datasets) | PairClassification (3 datasets) | Reranking (4 datasets) | Retrieval (15 datasets) | STS (10 datasets) | Summarization (1 dataset) | +| --------------------------------------------------------------------------------------------- | ----------------- | ---------------------------- | ------------------------ | ------------------------------- | ---------------------- | ----------------------- | ----------------- | ------------------------- | +| **mxbai-embed-large-v1** | **64.68** | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85.00 | 32.71 | +| [bge-large-en-v1.5](https://huggingface.co./BAAI/bge-large-en-v1.5) | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 | +| [mxbai-embed-2d-large-v1](https://huggingface.co./mixedbread-ai/mxbai-embed-2d-large-v1) | 63.25 | 74.14 | 46.07 | 85.89 | 58.94 | 51.42 | 84.9 | 31.55 | +| [nomic-embed-text-v1](https://huggingface.co./nomic-ai/nomic-embed-text-v1) | 62.39 | 74.12 | 43.91 | 85.15 | 55.69 | 52.81 | 82.06 | 30.08 | +| [jina-embeddings-v2-base-en](https://huggingface.co./jinaai/jina-embeddings-v2-base-en) | 60.38 | 73.45 | 41.73 | 85.38 | 56.98 | 47.87 | 80.7 | 31.6 | +| *Proprietary Models* | | | | | | | | | +| [OpenAI text-embedding-3-large](https://openai.com/blog/new-embedding-models-and-api-updates) | 64.58 | 75.45 | 49.01 | 85.72 | 59.16 | 55.44 | 81.73 | 29.92 | +| [Cohere embed-english-v3.0](https://txt.cohere.com/introducing-embed-v3/) | 64.47 | 76.49 | 47.43 | 85.84 | 58.01 | 55.00 | 82.62 | 30.18 | +| [OpenAI text-embedding-ada-002](https://openai.com/blog/new-and-improved-embedding-model) | 60.99 | 70.93 | 45.90 | 84.89 | 56.32 | 49.25 | 80.97 | 30.80 | + + +Please find more information in our [blog post](https://mixedbread.ai/blog/mxbai-embed-large-v1). + +## Matryoshka and Binary Quantization + +Embeddings in their commonly used form (float arrays) have a high memory footprint when used at scale. Two approaches to solve this problem are Matryoshka Representation Learning (MRL) and (Binary) Quantization. While MRL reduces the number of dimensions of an embedding, binary quantization transforms the value of each dimension from a float32 into a lower precision (int8 or even binary). The model supports both approaches! + +You can also take it one step further, and combine both MRL and quantization. This combination of binary quantization and MRL allows you to reduce the memory usage of your embeddings significantly. This leads to much lower costs when using a vector database in particular. You can read more about the technology and its advantages in our [blog post](https://www.mixedbread.ai/blog/binary-mrl). + +## Community +Please join our [Discord Community](https://discord.gg/jDfMHzAVfU) and share your feedback and thoughts! We are here to help and also always happy to chat. + +## License +Apache 2.0 + +## Citation + +```bibtex +@online{emb2024mxbai, + title={Open Source Strikes Bread - New Fluffy Embeddings Model}, + author={Sean Lee and Aamir Shakir and Darius Koenig and Julius Lipp}, + year={2024}, + url={https://www.mixedbread.ai/blog/mxbai-embed-large-v1}, +} + +@article{li2023angle, + title={AnglE-optimized Text Embeddings}, + author={Li, Xianming and Li, Jing}, + journal={arXiv preprint arXiv:2309.12871}, + year={2023} +} +```