Porjaz commited on
Commit
b835215
1 Parent(s): e5d8d23

Update hyperparams.yalm

Browse files
Files changed (1) hide show
  1. hyperparams.yalm +18 -17
hyperparams.yalm CHANGED
@@ -7,7 +7,7 @@ __set_seed: !apply:torch.manual_seed [1234]
7
 
8
  skip_training: True
9
 
10
- output_folder: output_folder_wavlm_base
11
  label_encoder_file: !ref <output_folder>/label_encoder.txt
12
 
13
  train_log: !ref <output_folder>/train_log.txt
@@ -17,6 +17,8 @@ save_folder: !ref <output_folder>/save
17
 
18
  wav2vec2_hub: microsoft/wavlm-base-plus-sv
19
 
 
 
20
  wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint
21
 
22
  # Feature parameters
@@ -52,7 +54,7 @@ encoder_dims: 768
52
  n_classes: 5
53
 
54
  # Wav2vec2 encoder
55
- embedding_model: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
56
  source: !ref <wav2vec2_hub>
57
  output_norm: True
58
  freeze: !ref <freeze_wav2vec2>
@@ -60,25 +62,20 @@ embedding_model: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWa
60
  save_path: !ref <wav2vec2_folder>
61
  output_all_hiddens: True
62
 
63
-
64
  avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling
65
  return_std: False
66
 
67
-
68
- classifier: !new:speechbrain.nnet.linear.Linear
69
  input_size: !ref <encoder_dims>
70
  n_neurons: !ref <n_classes>
71
  bias: False
72
 
73
-
74
  log_softmax: !new:speechbrain.nnet.activations.Softmax
75
  apply_log: True
76
 
77
-
78
  opt_class: !name:torch.optim.Adam
79
  lr: !ref <lr>
80
 
81
-
82
  wav2vec2_opt_class: !name:torch.optim.Adam
83
  lr: !ref <lr_wav2vec2>
84
 
@@ -88,41 +85,45 @@ epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
88
  # Functions that compute the statistics to track during the validation step.
89
  accuracy_computer: !name:speechbrain.utils.Accuracy.AccuracyStats
90
 
91
-
92
  compute_cost: !name:speechbrain.nnet.losses.nll_loss
93
 
94
-
95
  error_stats: !name:speechbrain.utils.metric_stats.MetricStats
96
  metric: !name:speechbrain.nnet.losses.classification_error
97
  reduction: batch
98
-
99
  modules:
100
  wav2vec2: !ref <wav2vec2>
101
  label_lin: !ref <label_lin>
102
 
103
-
104
  model: !new:torch.nn.ModuleList
105
  - [!ref <label_lin>]
106
 
107
-
108
  lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler
109
  initial_value: !ref <lr>
110
  improvement_threshold: 0.0025
111
  annealing_factor: 0.9
112
  patient: 0
113
 
114
-
115
  lr_annealing_wav2vec2: !new:speechbrain.nnet.schedulers.NewBobScheduler
116
  initial_value: !ref <lr_wav2vec2>
117
  improvement_threshold: 0.0025
118
  annealing_factor: 0.9
119
 
120
-
121
  checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
122
  checkpoints_dir: !ref <save_folder>
123
  recoverables:
124
- model: !ref <classifier>
125
- wav2vec2: !ref <embedding_model>
126
  lr_annealing_output: !ref <lr_annealing>
127
  lr_annealing_wav2vec2: !ref <lr_annealing_wav2vec2>
128
  counter: !ref <epoch_counter>
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
  skip_training: True
9
 
10
+ output_folder: output_folder_wavlm_base_full_data
11
  label_encoder_file: !ref <output_folder>/label_encoder.txt
12
 
13
  train_log: !ref <output_folder>/train_log.txt
 
17
 
18
  wav2vec2_hub: microsoft/wavlm-base-plus-sv
19
 
20
+ pretrained_path: Porjaz/wavlm-base-emo-fi
21
+
22
  wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint
23
 
24
  # Feature parameters
 
54
  n_classes: 5
55
 
56
  # Wav2vec2 encoder
57
+ wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
58
  source: !ref <wav2vec2_hub>
59
  output_norm: True
60
  freeze: !ref <freeze_wav2vec2>
 
62
  save_path: !ref <wav2vec2_folder>
63
  output_all_hiddens: True
64
 
 
65
  avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling
66
  return_std: False
67
 
68
+ label_lin: !new:speechbrain.nnet.linear.Linear
 
69
  input_size: !ref <encoder_dims>
70
  n_neurons: !ref <n_classes>
71
  bias: False
72
 
 
73
  log_softmax: !new:speechbrain.nnet.activations.Softmax
74
  apply_log: True
75
 
 
76
  opt_class: !name:torch.optim.Adam
77
  lr: !ref <lr>
78
 
 
79
  wav2vec2_opt_class: !name:torch.optim.Adam
80
  lr: !ref <lr_wav2vec2>
81
 
 
85
  # Functions that compute the statistics to track during the validation step.
86
  accuracy_computer: !name:speechbrain.utils.Accuracy.AccuracyStats
87
 
 
88
  compute_cost: !name:speechbrain.nnet.losses.nll_loss
89
 
 
90
  error_stats: !name:speechbrain.utils.metric_stats.MetricStats
91
  metric: !name:speechbrain.nnet.losses.classification_error
92
  reduction: batch
 
93
  modules:
94
  wav2vec2: !ref <wav2vec2>
95
  label_lin: !ref <label_lin>
96
 
 
97
  model: !new:torch.nn.ModuleList
98
  - [!ref <label_lin>]
99
 
 
100
  lr_annealing: !new:speechbrain.nnet.schedulers.NewBobScheduler
101
  initial_value: !ref <lr>
102
  improvement_threshold: 0.0025
103
  annealing_factor: 0.9
104
  patient: 0
105
 
 
106
  lr_annealing_wav2vec2: !new:speechbrain.nnet.schedulers.NewBobScheduler
107
  initial_value: !ref <lr_wav2vec2>
108
  improvement_threshold: 0.0025
109
  annealing_factor: 0.9
110
 
 
111
  checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
112
  checkpoints_dir: !ref <save_folder>
113
  recoverables:
114
+ model: !ref <model>
115
+ wav2vec2: !ref <wav2vec2>
116
  lr_annealing_output: !ref <lr_annealing>
117
  lr_annealing_wav2vec2: !ref <lr_annealing_wav2vec2>
118
  counter: !ref <epoch_counter>
119
+
120
+
121
+ pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
122
+ loadables:
123
+ wav2vec2: !ref <wav2vec2>
124
+ model: !ref <model>
125
+ label_encoder: !ref <label_encoder>
126
+ paths:
127
+ wav2vec2: !ref <pretrained_path>/wav2vec2.ckpt
128
+ model: !ref <pretrained_path>/model.ckpt
129
+ label_encoder: !ref <pretrained_path>/label_encoder.txt