--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct tags: - generated_from_trainer datasets: - arrow model-index: - name: sparql-qwen results: [] --- # sparql-qwen This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co./Qwen/Qwen2.5-Coder-0.5B-Instruct) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 0.5436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.7618 | 0.1048 | 500 | 0.7231 | | 0.7397 | 0.2096 | 1000 | 0.6676 | | 0.7213 | 0.3143 | 1500 | 0.6440 | | 0.7047 | 0.4191 | 2000 | 0.6283 | | 0.6905 | 0.5239 | 2500 | 0.6181 | | 0.6822 | 0.6287 | 3000 | 0.6081 | | 0.6651 | 0.7334 | 3500 | 0.6007 | | 0.662 | 0.8382 | 4000 | 0.5938 | | 0.6535 | 0.9430 | 4500 | 0.5889 | | 0.562 | 1.0478 | 5000 | 0.5846 | | 0.4974 | 1.1526 | 5500 | 0.5820 | | 0.5317 | 1.2573 | 6000 | 0.5778 | | 0.572 | 1.3621 | 6500 | 0.5743 | | 0.5167 | 1.4669 | 7000 | 0.5718 | | 0.5479 | 1.5717 | 7500 | 0.5692 | | 0.5368 | 1.6764 | 8000 | 0.5659 | | 0.5622 | 1.7812 | 8500 | 0.5643 | | 0.5146 | 1.8860 | 9000 | 0.5621 | | 0.509 | 1.9908 | 9500 | 0.5602 | | 0.5536 | 2.0956 | 10000 | 0.5589 | | 0.5035 | 2.2003 | 10500 | 0.5592 | | 0.5399 | 2.3051 | 11000 | 0.5567 | | 0.5247 | 2.4099 | 11500 | 0.5553 | | 0.5365 | 2.5147 | 12000 | 0.5549 | | 0.4425 | 2.6194 | 12500 | 0.5545 | | 0.4761 | 2.7242 | 13000 | 0.5524 | | 0.5368 | 2.8290 | 13500 | 0.5509 | | 0.5214 | 2.9338 | 14000 | 0.5494 | | 0.519 | 3.0386 | 14500 | 0.5496 | | 0.5606 | 3.1433 | 15000 | 0.5492 | | 0.5362 | 3.2481 | 15500 | 0.5476 | | 0.5275 | 3.3529 | 16000 | 0.5476 | | 0.5159 | 3.4577 | 16500 | 0.5464 | | 0.5171 | 3.5624 | 17000 | 0.5461 | | 0.5242 | 3.6672 | 17500 | 0.5454 | | 0.5053 | 3.7720 | 18000 | 0.5445 | | 0.512 | 3.8768 | 18500 | 0.5441 | | 0.5259 | 3.9816 | 19000 | 0.5428 | | 0.4363 | 4.0863 | 19500 | 0.5437 | | 0.4784 | 4.1911 | 20000 | 0.5440 | | 0.4703 | 4.2959 | 20500 | 0.5448 | | 0.4467 | 4.4007 | 21000 | 0.5436 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3