PopularPenguin
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: Qwen/Qwen2.5-Coder-0.5B
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: sparql-qwen
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# sparql-qwen
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-0.5B](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6232
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0003
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 100
|
45 |
+
- num_epochs: 10
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
52 |
+
| 0.7485 | 0.1048 | 500 | 0.8336 |
|
53 |
+
| 0.7336 | 0.2096 | 1000 | 0.7696 |
|
54 |
+
| 0.6787 | 0.3143 | 1500 | 0.7376 |
|
55 |
+
| 0.6756 | 0.4191 | 2000 | 0.7190 |
|
56 |
+
| 0.6651 | 0.5239 | 2500 | 0.7038 |
|
57 |
+
| 0.6835 | 0.6287 | 3000 | 0.6932 |
|
58 |
+
| 0.6572 | 0.7334 | 3500 | 0.6810 |
|
59 |
+
| 0.6664 | 0.8382 | 4000 | 0.6773 |
|
60 |
+
| 0.6304 | 0.9430 | 4500 | 0.6675 |
|
61 |
+
| 0.7408 | 1.0478 | 5000 | 0.6648 |
|
62 |
+
| 0.7004 | 1.1526 | 5500 | 0.6616 |
|
63 |
+
| 0.6466 | 1.2573 | 6000 | 0.6579 |
|
64 |
+
| 0.6914 | 1.3621 | 6500 | 0.6543 |
|
65 |
+
| 0.6885 | 1.4669 | 7000 | 0.6507 |
|
66 |
+
| 0.6508 | 1.5717 | 7500 | 0.6478 |
|
67 |
+
| 0.7039 | 1.6764 | 8000 | 0.6442 |
|
68 |
+
| 0.665 | 1.7812 | 8500 | 0.6436 |
|
69 |
+
| 0.6483 | 1.8860 | 9000 | 0.6405 |
|
70 |
+
| 0.699 | 1.9908 | 9500 | 0.6373 |
|
71 |
+
| 0.4961 | 2.0956 | 10000 | 0.6380 |
|
72 |
+
| 0.5103 | 2.2003 | 10500 | 0.6367 |
|
73 |
+
| 0.5443 | 2.3051 | 11000 | 0.6349 |
|
74 |
+
| 0.4813 | 2.4099 | 11500 | 0.6340 |
|
75 |
+
| 0.5555 | 2.5147 | 12000 | 0.6324 |
|
76 |
+
| 0.5711 | 2.6194 | 12500 | 0.6313 |
|
77 |
+
| 0.5088 | 2.7242 | 13000 | 0.6309 |
|
78 |
+
| 0.492 | 2.8290 | 13500 | 0.6297 |
|
79 |
+
| 0.4936 | 2.9338 | 14000 | 0.6267 |
|
80 |
+
| 0.6411 | 3.0386 | 14500 | 0.6271 |
|
81 |
+
| 0.6618 | 3.1433 | 15000 | 0.6267 |
|
82 |
+
| 0.6212 | 3.2481 | 15500 | 0.6260 |
|
83 |
+
| 0.6337 | 3.3529 | 16000 | 0.6253 |
|
84 |
+
| 0.6412 | 3.4577 | 16500 | 0.6234 |
|
85 |
+
| 0.6208 | 3.5624 | 17000 | 0.6232 |
|
86 |
+
| 0.676 | 3.6672 | 17500 | 0.6226 |
|
87 |
+
| 0.6465 | 3.7720 | 18000 | 0.6217 |
|
88 |
+
| 0.6157 | 3.8768 | 18500 | 0.6210 |
|
89 |
+
| 0.6622 | 3.9816 | 19000 | 0.6200 |
|
90 |
+
| 0.4811 | 4.0863 | 19500 | 0.6219 |
|
91 |
+
| 0.5264 | 4.1911 | 20000 | 0.6213 |
|
92 |
+
| 0.4738 | 4.2959 | 20500 | 0.6232 |
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- PEFT 0.14.0
|
98 |
+
- Transformers 4.46.3
|
99 |
+
- Pytorch 2.4.0
|
100 |
+
- Datasets 3.1.0
|
101 |
+
- Tokenizers 0.20.3
|
adapter_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen2.5-Coder-0.5B",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 2,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 4,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"v_proj",
|
27 |
+
"k_proj",
|
28 |
+
"q_proj",
|
29 |
+
"o_proj"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM",
|
32 |
+
"use_dora": false,
|
33 |
+
"use_rslora": false
|
34 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60d95b10b6e140a9626a7058d5038528f2ff80148dc4569b881db56052046509
|
3 |
+
size 40
|
runs/Dec16_13-07-28_6bb746224038/events.out.tfevents.1734354452.6bb746224038.23.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ebdfe318b31951edf9d81e96654a49b5e3abc6150c7b439f302879e65db73c8
|
3 |
+
size 451262
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a37a5128de6898677143bf9e10edaa1a8bbe7dc250bf5520cc96066c9b533acf
|
3 |
+
size 5240
|