File size: 3,662 Bytes
0f5bd6a
 
 
 
 
 
f24ed74
2760bfe
 
0340bf4
 
2760bfe
 
 
df4735f
2760bfe
 
 
bb047bd
 
 
 
2760bfe
464bccf
 
594f543
464bccf
 
 
cc3b02a
464bccf
cc1bec1
 
 
 
 
464bccf
 
 
cc3b02a
464bccf
 
 
 
cc3b02a
464bccf
 
 
594f543
aa14fb6
 
464bccf
 
cc3b02a
aa14fb6
2760bfe
aa14fb6
464bccf
dce3f5f
cc3b02a
f24ed74
2760bfe
aa14fb6
464bccf
 
cc3b02a
f24ed74
2760bfe
aa14fb6
464bccf
 
cc3b02a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- vision
- image-classification
---

# Surgicare

> Surgicare (Surgical + Care) 
<img src="https://i.imgur.com/nOi95Cj.png" width="250">

SurgiCare is an AI system designed to support post-surgery patient recovery. In this repository, we focus on a wound classification model trained on an open-source dataset. Our objective is to improve the accuracy of wound detection and guide patients in managing their wound recovery efficiently.
- **Online Demo**: [https://surgicare-demo.streamlit.app/](https://surgicare-demo.streamlit.app/)
- Wound dataset: [https://www.kaggle.com/datasets/ibrahimfateen/wound-classification](https://www.kaggle.com/datasets/ibrahimfateen/wound-classification)

- Github Repo: [https://github.com/PogusTheWhisper/SurgiCare.git](https://github.com/PogusTheWhisper/SurgiCare.git)
- Pretrained Models:
    * Surgicare-V1-large-turbo: [https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-large-turbo.keras](https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-large-turbo.keras)
    * Surgicare-V1-large: [https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-large.keras](https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-large.keras)
    * Surgicare-V1-medium: [https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-medium.keras](https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-medium.keras)
    * Surgicare-V1-small: [https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-small.keras](https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-small.keras)

---

## Result of standard models
### EfficientnetV2 B3
* Accuracy: 0.6884

<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/EfficientNetV2B3-standard.png?raw=true" width="800">

### Efficientnet B3
* Accuracy: 0.7436

<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/EfficientNetB3-standard.png?raw=true" width="800">

### MobileNetV3Large
* Accuracy: 0.6164
  
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/MobileNetV3Large-standard.png?raw=true" width="800">

### MobileNetV3Small
* Accuracy: 0.6199
  
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/MobileNetV3Small-standard.png?raw=true" width="800">

---

## Result of our models!!
### EfficientnetV2 B3
* Accuracy: 0.9127
* Training Details: I used EfficientNet-B3 to train for 50 epochs, monitoring the validation loss.
  
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/SurgiCare-V1-large-turbo.png?raw=true" width="800">

### Efficientnet B3
* Accuracy: 0.9062
* Training Details: I used EfficientNet-B3 to train for 25 epochs, monitoring the validation loss.

<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/SurgiCare-V1-large.png?raw=true" width="800">

### MobileNetV3Large
* Accuracy: 0.7969
* Training Details: I used MobileNetV3Large to train for 50 epochs, monitoring the validation loss.

<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/SurgiCare-V1-medium.png?raw=true" width="800">

### MobileNetV3Small
* Accuracy: 0.7812
* Training Details: I used MobileNetV3Small to train for 50 epochs, monitoring the validation loss.

<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/SurgiCare-V1-small.png?raw=true" width="800">