File size: 3,662 Bytes
0f5bd6a f24ed74 2760bfe 0340bf4 2760bfe df4735f 2760bfe bb047bd 2760bfe 464bccf 594f543 464bccf cc3b02a 464bccf cc1bec1 464bccf cc3b02a 464bccf cc3b02a 464bccf 594f543 aa14fb6 464bccf cc3b02a aa14fb6 2760bfe aa14fb6 464bccf dce3f5f cc3b02a f24ed74 2760bfe aa14fb6 464bccf cc3b02a f24ed74 2760bfe aa14fb6 464bccf cc3b02a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
tags:
- vision
- image-classification
---
# Surgicare
> Surgicare (Surgical + Care)
<img src="https://i.imgur.com/nOi95Cj.png" width="250">
SurgiCare is an AI system designed to support post-surgery patient recovery. In this repository, we focus on a wound classification model trained on an open-source dataset. Our objective is to improve the accuracy of wound detection and guide patients in managing their wound recovery efficiently.
- **Online Demo**: [https://surgicare-demo.streamlit.app/](https://surgicare-demo.streamlit.app/)
- Wound dataset: [https://www.kaggle.com/datasets/ibrahimfateen/wound-classification](https://www.kaggle.com/datasets/ibrahimfateen/wound-classification)
- Github Repo: [https://github.com/PogusTheWhisper/SurgiCare.git](https://github.com/PogusTheWhisper/SurgiCare.git)
- Pretrained Models:
* Surgicare-V1-large-turbo: [https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-large-turbo.keras](https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-large-turbo.keras)
* Surgicare-V1-large: [https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-large.keras](https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-large.keras)
* Surgicare-V1-medium: [https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-medium.keras](https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-medium.keras)
* Surgicare-V1-small: [https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-small.keras](https://huggingface.co./PogusTheWhisper/SurgiCare/resolve/main/SurgiCare-V1-small.keras)
---
## Result of standard models
### EfficientnetV2 B3
* Accuracy: 0.6884
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/EfficientNetV2B3-standard.png?raw=true" width="800">
### Efficientnet B3
* Accuracy: 0.7436
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/EfficientNetB3-standard.png?raw=true" width="800">
### MobileNetV3Large
* Accuracy: 0.6164
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/MobileNetV3Large-standard.png?raw=true" width="800">
### MobileNetV3Small
* Accuracy: 0.6199
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/MobileNetV3Small-standard.png?raw=true" width="800">
---
## Result of our models!!
### EfficientnetV2 B3
* Accuracy: 0.9127
* Training Details: I used EfficientNet-B3 to train for 50 epochs, monitoring the validation loss.
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/SurgiCare-V1-large-turbo.png?raw=true" width="800">
### Efficientnet B3
* Accuracy: 0.9062
* Training Details: I used EfficientNet-B3 to train for 25 epochs, monitoring the validation loss.
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/SurgiCare-V1-large.png?raw=true" width="800">
### MobileNetV3Large
* Accuracy: 0.7969
* Training Details: I used MobileNetV3Large to train for 50 epochs, monitoring the validation loss.
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/SurgiCare-V1-medium.png?raw=true" width="800">
### MobileNetV3Small
* Accuracy: 0.7812
* Training Details: I used MobileNetV3Small to train for 50 epochs, monitoring the validation loss.
<img src="https://raw.githubusercontent.com/PogusTheWhisper/SurgiCare/main/wound_classify_train/SurgiCare-V1-small.png?raw=true" width="800"> |