File size: 1,336 Bytes
ac8b9ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
[model_arguments]
v2 = false
v_parameterization = false
pretrained_model_name_or_path = "/content/pretrained_model/Animefull-final-pruned.ckpt"
[additional_network_arguments]
no_metadata = false
unet_lr = 1.0
text_encoder_lr = 0.5
network_module = "networks.lora"
network_dim = 128
network_alpha = 128
network_train_unet_only = false
network_train_text_encoder_only = false
[optimizer_arguments]
optimizer_type = "DAdaptAdam"
learning_rate = 1.0
max_grad_norm = 1.0
optimizer_args = [ "decouple=True", "weight_decay=0.01", "betas=0.9,0.99",]
lr_scheduler = "constant"
lr_warmup_steps = 0
[dataset_arguments]
cache_latents = true
debug_dataset = false
vae_batch_size = 4
[training_arguments]
output_dir = "/content/LoRA/output"
output_name = "qingque"
save_precision = "fp16"
save_every_n_epochs = 2
train_batch_size = 3
max_token_length = 225
mem_eff_attn = false
xformers = true
max_train_epochs = 10
max_data_loader_n_workers = 8
persistent_data_loader_workers = true
seed = 31337
gradient_checkpointing = false
gradient_accumulation_steps = 1
mixed_precision = "fp16"
clip_skip = 2
logging_dir = "/content/LoRA/logs"
log_prefix = "qingque"
lowram = true
[sample_prompt_arguments]
sample_every_n_epochs = 1
sample_sampler = "ddim"
[dreambooth_arguments]
prior_loss_weight = 1.0
[saving_arguments]
save_model_as = "safetensors"
|