Upload 9 files
Browse files- .gitattributes +0 -16
- README.md +9 -329
- config.json +38 -2
- handler.py +30 -0
- pytorch_model.bin +3 -0
- requirements.txt +1 -6
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -2,13 +2,11 @@
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
*.npy filter=lfs diff=lfs merge=lfs -text
|
@@ -22,10 +20,8 @@
|
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
@@ -33,15 +29,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
codellama-7b-instruct.Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
-
codellama-7b-instruct.Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
|
38 |
-
codellama-7b-instruct.Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
39 |
-
codellama-7b-instruct.Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
|
40 |
-
codellama-7b-instruct.Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
|
41 |
-
codellama-7b-instruct.Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
42 |
-
codellama-7b-instruct.Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
|
43 |
-
codellama-7b-instruct.Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
|
44 |
-
codellama-7b-instruct.Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
|
45 |
-
codellama-7b-instruct.Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
|
46 |
-
codellama-7b-instruct.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
|
47 |
-
codellama-7b-instruct.Q5_0.gguf filter=lfs diff=lfs merge=lfs -text
|
|
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
5 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
10 |
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
*.npy filter=lfs diff=lfs merge=lfs -text
|
|
|
20 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
23 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,336 +1,16 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
-
datasets:
|
4 |
-
- PetraAI/PetraAI
|
5 |
language:
|
6 |
-
- ar
|
7 |
- en
|
8 |
-
- ch
|
9 |
-
- zh
|
10 |
-
metrics:
|
11 |
-
- accuracy
|
12 |
-
- bertscore
|
13 |
-
- bleu
|
14 |
-
- chrf
|
15 |
-
- code_eval
|
16 |
-
- brier_score
|
17 |
tags:
|
18 |
-
-
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
|
23 |
-
-
|
24 |
-
|
25 |
-
-
|
26 |
-
- medical
|
27 |
-
- text-generation-inference
|
28 |
---
|
29 |
|
30 |
-
### Inference Speed
|
31 |
-
> The result is generated using [this script](examples/benchmark/generation_speed.py), batch size of input is 1, decode strategy is beam search and enforce the model to generate 512 tokens, speed metric is tokens/s (the larger, the better).
|
32 |
-
>
|
33 |
-
> The quantized model is loaded using the setup that can gain the fastest inference speed.
|
34 |
-
|
35 |
-
| model | GPU | num_beams | fp16 | gptq-int4 |
|
36 |
-
|---------------|---------------|-----------|-------|-----------|
|
37 |
-
| llama-7b | 1xA100-40G | 1 | 18.87 | 25.53 |
|
38 |
-
| llama-7b | 1xA100-40G | 4 | 68.79 | 91.30 |
|
39 |
-
| moss-moon 16b | 1xA100-40G | 1 | 12.48 | 15.25 |
|
40 |
-
| moss-moon 16b | 1xA100-40G | 4 | OOM | 42.67 |
|
41 |
-
| moss-moon 16b | 2xA100-40G | 1 | 06.83 | 06.78 |
|
42 |
-
| moss-moon 16b | 2xA100-40G | 4 | 13.10 | 10.80 |
|
43 |
-
| gpt-j 6b | 1xRTX3060-12G | 1 | OOM | 29.55 |
|
44 |
-
| gpt-j 6b | 1xRTX3060-12G | 4 | OOM | 47.36 |
|
45 |
-
|
46 |
-
|
47 |
-
### Perplexity
|
48 |
-
For perplexity comparison, you can turn to [here](https://github.com/qwopqwop200/GPTQ-for-LLaMa#result) and [here](https://github.com/qwopqwop200/GPTQ-for-LLaMa#gptq-vs-bitsandbytes)
|
49 |
-
|
50 |
-
## Installation
|
51 |
-
|
52 |
-
### Quick Installation
|
53 |
-
You can install the latest stable release of AutoGPTQ from pip with pre-built wheels compatible with PyTorch 2.0.1:
|
54 |
-
|
55 |
-
* For CUDA 11.7: `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu117/`
|
56 |
-
* For CUDA 11.8: `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/`
|
57 |
-
* For RoCm 5.4.2: `pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm542/`
|
58 |
-
|
59 |
-
**Warning:** These wheels are not expected to work on PyTorch nightly. Please install AutoGPTQ from source when using PyTorch nightly.
|
60 |
-
|
61 |
-
#### disable cuda extensions
|
62 |
-
By default, cuda extensions will be installed when `torch` and `cuda` is already installed in your machine, if you don't want to use them, using:
|
63 |
-
```shell
|
64 |
-
BUILD_CUDA_EXT=0 pip install auto-gptq
|
65 |
-
```
|
66 |
-
And to make sure `autogptq_cuda` is not ever in your virtual environment, run:
|
67 |
-
```shell
|
68 |
-
pip uninstall autogptq_cuda -y
|
69 |
-
```
|
70 |
-
|
71 |
-
#### to support triton speedup
|
72 |
-
To integrate with `triton`, using:
|
73 |
-
> warning: currently triton only supports linux; 3-bit quantization is not supported when using triton
|
74 |
-
|
75 |
-
```shell
|
76 |
-
pip install auto-gptq[triton]
|
77 |
-
```
|
78 |
-
|
79 |
-
### Install from source
|
80 |
-
<details>
|
81 |
-
<summary>click to see details</summary>
|
82 |
-
|
83 |
-
Clone the source code:
|
84 |
-
```shell
|
85 |
-
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
|
86 |
-
```
|
87 |
-
Then, install from source:
|
88 |
-
```shell
|
89 |
-
pip install .
|
90 |
-
```
|
91 |
-
Like quick installation, you can also set `BUILD_CUDA_EXT=0` to disable pytorch extension building.
|
92 |
-
|
93 |
-
Use `.[triton]` if you want to integrate with triton and it's available on your operating system.
|
94 |
-
|
95 |
-
To install from source for AMD GPUs supporting RoCm, please specify the `ROCM_VERSION` environment variable. The compilation can be speeded up by specifying the `PYTORCH_ROCM_ARCH` variable ([reference](https://github.com/pytorch/pytorch/blob/7b73b1e8a73a1777ebe8d2cd4487eb13da55b3ba/setup.py#L132)), for example `gfx90a` for MI200 series devices. Example:
|
96 |
-
|
97 |
-
```
|
98 |
-
ROCM_VERSION=5.6 pip install .
|
99 |
-
```
|
100 |
-
|
101 |
-
For RoCm systems, the packages `rocsparse-dev`, `hipsparse-dev`, `rocthrust-dev`, `rocblas-dev` and `hipblas-dev` are required to build.
|
102 |
-
|
103 |
-
</details>
|
104 |
-
|
105 |
-
## Quick Tour
|
106 |
-
|
107 |
-
### Quantization and Inference
|
108 |
-
> warning: this is just a showcase of the usage of basic apis in AutoGPTQ, which uses only one sample to quantize a much small model, quality of quantized model using such little samples may not good.
|
109 |
-
|
110 |
-
Below is an example for the simplest use of `auto_gptq` to quantize a model and inference after quantization:
|
111 |
-
```python
|
112 |
-
from transformers import AutoTokenizer, TextGenerationPipeline
|
113 |
-
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
114 |
-
import logging
|
115 |
-
|
116 |
-
logging.basicConfig(
|
117 |
-
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
|
118 |
-
)
|
119 |
-
|
120 |
-
pretrained_model_dir = "facebook/opt-125m"
|
121 |
-
quantized_model_dir = "opt-125m-4bit"
|
122 |
-
|
123 |
-
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
|
124 |
-
examples = [
|
125 |
-
tokenizer(
|
126 |
-
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
|
127 |
-
)
|
128 |
-
]
|
129 |
-
|
130 |
-
quantize_config = BaseQuantizeConfig(
|
131 |
-
bits=4, # quantize model to 4-bit
|
132 |
-
group_size=128, # it is recommended to set the value to 128
|
133 |
-
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad
|
134 |
-
)
|
135 |
-
|
136 |
-
# load un-quantized model, by default, the model will always be loaded into CPU memory
|
137 |
-
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
|
138 |
-
|
139 |
-
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
|
140 |
-
model.quantize(examples)
|
141 |
-
|
142 |
-
# save quantized model
|
143 |
-
model.save_quantized(quantized_model_dir)
|
144 |
-
|
145 |
-
# save quantized model using safetensors
|
146 |
-
model.save_quantized(quantized_model_dir, use_safetensors=True)
|
147 |
-
|
148 |
-
# push quantized model to Hugging Face Hub.
|
149 |
-
# to use use_auth_token=True, Login first via huggingface-cli login.
|
150 |
-
# or pass explcit token with: use_auth_token="hf_xxxxxxx"
|
151 |
-
# (uncomment the following three lines to enable this feature)
|
152 |
-
# repo_id = f"YourUserName/{quantized_model_dir}"
|
153 |
-
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
|
154 |
-
# model.push_to_hub(repo_id, commit_message=commit_message, use_auth_token=True)
|
155 |
-
|
156 |
-
# alternatively you can save and push at the same time
|
157 |
-
# (uncomment the following three lines to enable this feature)
|
158 |
-
# repo_id = f"YourUserName/{quantized_model_dir}"
|
159 |
-
# commit_message = f"AutoGPTQ model for {pretrained_model_dir}: {quantize_config.bits}bits, gr{quantize_config.group_size}, desc_act={quantize_config.desc_act}"
|
160 |
-
# model.push_to_hub(repo_id, save_dir=quantized_model_dir, use_safetensors=True, commit_message=commit_message, use_auth_token=True)
|
161 |
-
|
162 |
-
# load quantized model to the first GPU
|
163 |
-
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0")
|
164 |
-
|
165 |
-
# download quantized model from Hugging Face Hub and load to the first GPU
|
166 |
-
# model = AutoGPTQForCausalLM.from_quantized(repo_id, device="cuda:0", use_safetensors=True, use_triton=False)
|
167 |
-
|
168 |
-
# inference with model.generate
|
169 |
-
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0]))
|
170 |
-
|
171 |
-
# or you can also use pipeline
|
172 |
-
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
|
173 |
-
print(pipeline("auto-gptq is")[0]["generated_text"])
|
174 |
-
```
|
175 |
-
|
176 |
-
For more advanced features of model quantization, please reference to [this script](examples/quantization/quant_with_alpaca.py)
|
177 |
-
|
178 |
-
### Customize Model
|
179 |
-
<details>
|
180 |
-
|
181 |
-
<summary>Below is an example to extend `auto_gptq` to support `OPT` model, as you will see, it's very easy:</summary>
|
182 |
-
|
183 |
-
```python
|
184 |
-
from auto_gptq.modeling import BaseGPTQForCausalLM
|
185 |
-
|
186 |
-
|
187 |
-
class OPTGPTQForCausalLM(BaseGPTQForCausalLM):
|
188 |
-
# chained attribute name of transformer layer block
|
189 |
-
layers_block_name = "model.decoder.layers"
|
190 |
-
# chained attribute names of other nn modules that in the same level as the transformer layer block
|
191 |
-
outside_layer_modules = [
|
192 |
-
"model.decoder.embed_tokens", "model.decoder.embed_positions", "model.decoder.project_out",
|
193 |
-
"model.decoder.project_in", "model.decoder.final_layer_norm"
|
194 |
-
]
|
195 |
-
# chained attribute names of linear layers in transformer layer module
|
196 |
-
# normally, there are four sub lists, for each one the modules in it can be seen as one operation,
|
197 |
-
# and the order should be the order when they are truly executed, in this case (and usually in most cases),
|
198 |
-
# they are: attention q_k_v projection, attention output projection, MLP project input, MLP project output
|
199 |
-
inside_layer_modules = [
|
200 |
-
["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"],
|
201 |
-
["self_attn.out_proj"],
|
202 |
-
["fc1"],
|
203 |
-
["fc2"]
|
204 |
-
]
|
205 |
-
```
|
206 |
-
After this, you can use `OPTGPTQForCausalLM.from_pretrained` and other methods as shown in Basic.
|
207 |
-
|
208 |
-
</details>
|
209 |
-
|
210 |
-
### Evaluation on Downstream Tasks
|
211 |
-
You can use tasks defined in `auto_gptq.eval_tasks` to evaluate model's performance on specific down-stream task before and after quantization.
|
212 |
-
|
213 |
-
The predefined tasks support all causal-language-models implemented in [🤗 transformers](https://github.com/huggingface/transformers) and in this project.
|
214 |
-
|
215 |
-
<details>
|
216 |
-
|
217 |
-
<summary>Below is an example to evaluate `EleutherAI/gpt-j-6b` on sequence-classification task using `cardiffnlp/tweet_sentiment_multilingual` dataset:</summary>
|
218 |
-
|
219 |
-
```python
|
220 |
-
from functools import partial
|
221 |
-
|
222 |
-
import datasets
|
223 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
224 |
-
|
225 |
-
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
226 |
-
from auto_gptq.eval_tasks import SequenceClassificationTask
|
227 |
-
|
228 |
-
|
229 |
-
MODEL = "EleutherAI/gpt-j-6b"
|
230 |
-
DATASET = "cardiffnlp/tweet_sentiment_multilingual"
|
231 |
-
TEMPLATE = "Question:What's the sentiment of the given text? Choices are {labels}.\nText: {text}\nAnswer:"
|
232 |
-
ID2LABEL = {
|
233 |
-
0: "negative",
|
234 |
-
1: "neutral",
|
235 |
-
2: "positive"
|
236 |
-
}
|
237 |
-
LABELS = list(ID2LABEL.values())
|
238 |
-
|
239 |
-
|
240 |
-
def ds_refactor_fn(samples):
|
241 |
-
text_data = samples["text"]
|
242 |
-
label_data = samples["label"]
|
243 |
-
|
244 |
-
new_samples = {"prompt": [], "label": []}
|
245 |
-
for text, label in zip(text_data, label_data):
|
246 |
-
prompt = TEMPLATE.format(labels=LABELS, text=text)
|
247 |
-
new_samples["prompt"].append(prompt)
|
248 |
-
new_samples["label"].append(ID2LABEL[label])
|
249 |
-
|
250 |
-
return new_samples
|
251 |
-
|
252 |
-
|
253 |
-
# model = AutoModelForCausalLM.from_pretrained(MODEL).eval().half().to("cuda:0")
|
254 |
-
model = AutoGPTQForCausalLM.from_pretrained(MODEL, BaseQuantizeConfig())
|
255 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
256 |
-
|
257 |
-
task = SequenceClassificationTask(
|
258 |
-
model=model,
|
259 |
-
tokenizer=tokenizer,
|
260 |
-
classes=LABELS,
|
261 |
-
data_name_or_path=DATASET,
|
262 |
-
prompt_col_name="prompt",
|
263 |
-
label_col_name="label",
|
264 |
-
**{
|
265 |
-
"num_samples": 1000, # how many samples will be sampled to evaluation
|
266 |
-
"sample_max_len": 1024, # max tokens for each sample
|
267 |
-
"block_max_len": 2048, # max tokens for each data block
|
268 |
-
# function to load dataset, one must only accept data_name_or_path as input
|
269 |
-
# and return datasets.Dataset
|
270 |
-
"load_fn": partial(datasets.load_dataset, name="english"),
|
271 |
-
# function to preprocess dataset, which is used for datasets.Dataset.map,
|
272 |
-
# must return Dict[str, list] with only two keys: [prompt_col_name, label_col_name]
|
273 |
-
"preprocess_fn": ds_refactor_fn,
|
274 |
-
# truncate label when sample's length exceed sample_max_len
|
275 |
-
"truncate_prompt": False
|
276 |
-
}
|
277 |
-
)
|
278 |
-
|
279 |
-
# note that max_new_tokens will be automatically specified internally based on given classes
|
280 |
-
print(task.run())
|
281 |
-
|
282 |
-
# self-consistency
|
283 |
-
print(
|
284 |
-
task.run(
|
285 |
-
generation_config=GenerationConfig(
|
286 |
-
num_beams=3,
|
287 |
-
num_return_sequences=3,
|
288 |
-
do_sample=True
|
289 |
-
)
|
290 |
-
)
|
291 |
-
)
|
292 |
-
```
|
293 |
-
|
294 |
-
</details>
|
295 |
-
|
296 |
-
## Learn More
|
297 |
-
[tutorials](docs/tutorial) provide step-by-step guidance to integrate `auto_gptq` with your own project and some best practice principles.
|
298 |
-
|
299 |
-
[examples](examples/README.md) provide plenty of example scripts to use `auto_gptq` in different ways.
|
300 |
-
|
301 |
-
## Supported Models
|
302 |
-
|
303 |
-
> you can use `model.config.model_type` to compare with the table below to check whether the model you use is supported by `auto_gptq`.
|
304 |
-
>
|
305 |
-
> for example, model_type of `WizardLM`, `vicuna` and `gpt4all` are all `llama`, hence they are all supported by `auto_gptq`.
|
306 |
-
|
307 |
-
| model type | quantization | inference | peft-lora | peft-ada-lora | peft-adaption_prompt |
|
308 |
-
|------------------------------------|--------------|-----------|-----------|---------------|-------------------------------------------------------------------------------------------------|
|
309 |
-
| bloom | ✅ | ✅ | ✅ | ✅ | |
|
310 |
-
| gpt2 | ✅ | ✅ | ✅ | ✅ | |
|
311 |
-
| gpt_neox | ✅ | ✅ | ✅ | ✅ | ✅[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
|
312 |
-
| gptj | ✅ | ✅ | ✅ | ✅ | ✅[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
|
313 |
-
| llama | ✅ | ✅ | ✅ | ✅ | ✅ |
|
314 |
-
| moss | ✅ | ✅ | ✅ | ✅ | ✅[requires this peft branch](https://github.com/PanQiWei/peft/tree/multi_modal_adaption_prompt) |
|
315 |
-
| opt | ✅ | ✅ | ✅ | ✅ | |
|
316 |
-
| gpt_bigcode | ✅ | ✅ | ✅ | ✅ | |
|
317 |
-
| codegen | ✅ | ✅ | ✅ | ✅ | |
|
318 |
-
| falcon(RefinedWebModel/RefinedWeb) | ✅ | ✅ | ✅ | ✅ | |
|
319 |
-
|
320 |
-
## Supported Evaluation Tasks
|
321 |
-
Currently, `auto_gptq` supports: `LanguageModelingTask`, `SequenceClassificationTask` and `TextSummarizationTask`; more Tasks will come soon!
|
322 |
-
|
323 |
-
## Running tests
|
324 |
-
|
325 |
-
Tests can be run with:
|
326 |
-
|
327 |
-
```
|
328 |
-
pytest tests/ -s
|
329 |
-
```
|
330 |
-
|
331 |
-
## Acknowledgement
|
332 |
-
- Specially thanks **Elias Frantar**, **Saleh Ashkboos**, **Torsten Hoefler** and **Dan Alistarh** for proposing **GPTQ** algorithm and open source the [code](https://github.com/IST-DASLab/gptq).
|
333 |
-
- Specially thanks **qwopqwop200**, for code in this project that relevant to quantization are mainly referenced from [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/cuda).
|
334 |
-
|
335 |
|
336 |
-
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
language:
|
|
|
3 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
tags:
|
5 |
+
- text-classification
|
6 |
+
- emotion
|
7 |
+
- endpoints-template
|
8 |
+
license: apache-2.0
|
9 |
+
datasets:
|
10 |
+
- emotion
|
11 |
+
metrics:
|
12 |
+
- Accuracy, F1 Score
|
|
|
|
|
13 |
---
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Fork of [bhadresh-savani/distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
|
config.json
CHANGED
@@ -1,3 +1,39 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "./",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "sadness",
|
13 |
+
"1": "joy",
|
14 |
+
"2": "love",
|
15 |
+
"3": "anger",
|
16 |
+
"4": "fear",
|
17 |
+
"5": "surprise"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"label2id": {
|
21 |
+
"anger": 3,
|
22 |
+
"fear": 4,
|
23 |
+
"joy": 1,
|
24 |
+
"love": 2,
|
25 |
+
"sadness": 0,
|
26 |
+
"surprise": 5
|
27 |
+
},
|
28 |
+
"max_position_embeddings": 512,
|
29 |
+
"model_type": "distilbert",
|
30 |
+
"n_heads": 12,
|
31 |
+
"n_layers": 6,
|
32 |
+
"pad_token_id": 0,
|
33 |
+
"qa_dropout": 0.1,
|
34 |
+
"seq_classif_dropout": 0.2,
|
35 |
+
"sinusoidal_pos_embds": false,
|
36 |
+
"tie_weights_": true,
|
37 |
+
"transformers_version": "4.11.0.dev0",
|
38 |
+
"vocab_size": 30522
|
39 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import pipeline
|
3 |
+
import holidays
|
4 |
+
|
5 |
+
|
6 |
+
class EndpointHandler:
|
7 |
+
def __init__(self, path=""):
|
8 |
+
self.pipeline = pipeline("text-classification", model=path)
|
9 |
+
self.holidays = holidays.US()
|
10 |
+
|
11 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
12 |
+
"""
|
13 |
+
data args:
|
14 |
+
inputs (:obj: `str`)
|
15 |
+
date (:obj: `str`)
|
16 |
+
Return:
|
17 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
18 |
+
"""
|
19 |
+
# get inputs
|
20 |
+
inputs = data.pop("inputs", data)
|
21 |
+
# get additional date field
|
22 |
+
date = data.pop("date", None)
|
23 |
+
|
24 |
+
# check if date exists and if it is a holiday
|
25 |
+
if date is not None and date in self.holidays:
|
26 |
+
return [{"label": "happy", "score": 1}]
|
27 |
+
|
28 |
+
# run normal prediction
|
29 |
+
prediction = self.pipeline(inputs)
|
30 |
+
return prediction
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5aa7398d830fcc94f95af88d7cc3013813668cfc58a07d75a8116cfd8af75c4d
|
3 |
+
size 267875479
|
requirements.txt
CHANGED
@@ -1,6 +1 @@
|
|
1 |
-
|
2 |
-
ninja
|
3 |
-
fastparquet
|
4 |
-
torch>=2.0.1
|
5 |
-
safetensors>=0.3.2
|
6 |
-
sentencepiece>=0.1.97
|
|
|
1 |
+
holidaysholidays
|
|
|
|
|
|
|
|
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilbert-base-uncased"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|