|
from exllamav2 import ExLlamaV2, ExLlamaV2Config, ExLlamaV2Tokenizer |
|
import argparse, os |
|
import sys |
|
import json |
|
from conversion.tokenize import tokenize |
|
from conversion.quantize import embeddings, measure_quant, quant |
|
from conversion.optimize import optimize |
|
from conversion.compile import compile_model |
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description = "Convert model to ExLlamaV2") |
|
parser.add_argument("-i", "--in_dir", type = str, help = "Input directory", default = "") |
|
parser.add_argument("-o", "--out_dir", type = str, help = "Output directory") |
|
parser.add_argument("-c", "--cal_dataset", type = str, help = "Calibration dataset (.parquet file)", default = "") |
|
parser.add_argument("-r", "--dataset_rows", type = int, default = 100, help = "Number of rows to apply from dataset") |
|
parser.add_argument("-mr", "--measurement_rows", type = int, default = 16, help = "Number of rows to apply from dataset when measuring") |
|
parser.add_argument("-gr", "--gpu_rows", type = int, default = 16, help = "Threshold for paging hidden state to CPU") |
|
parser.add_argument("-l", "--length", type = int, default = 2048, help = "Max no. tokens per sample") |
|
parser.add_argument("-ml", "--measurement_length", type = int, default = 2048, help = "Max no. tokens per sample when measuring") |
|
parser.add_argument("-b", "--bits", type = float, default = 4.156, help = "Target bits per weight") |
|
parser.add_argument("-hb", "--head_bits", type = int, default = 6, help = "Target bits per weight (head layer)") |
|
parser.add_argument("-m", "--measurement", type = str, help = "Reuse previous measurement") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
in_dir = None if args.in_dir == "" else os.path.abspath(args.in_dir) |
|
out_dir = os.path.abspath(args.out_dir) |
|
cal_dataset = None if args.cal_dataset == "" else os.path.abspath(args.cal_dataset) |
|
dataset_rows = args.dataset_rows |
|
measurement_rows = args.measurement_rows |
|
gpu_rows = args.gpu_rows |
|
length = args.length |
|
measurement_length = args.measurement_length |
|
bits = args.bits |
|
head_bits = args.head_bits |
|
reuse_measurement = args.measurement |
|
|
|
if not os.path.exists(out_dir): |
|
print(f" ## Error: Directory not found: {out_dir}") |
|
sys.exit() |
|
|
|
|
|
|
|
config = ExLlamaV2Config() |
|
config.model_dir = in_dir |
|
config.prepare() |
|
|
|
model = ExLlamaV2(config) |
|
model.load(lazy = True) |
|
|
|
tokenizer = ExLlamaV2Tokenizer(config) |
|
|
|
|
|
|
|
job_file = os.path.join(out_dir, "job.json") |
|
|
|
|
|
|
|
def save_job(): |
|
global job_file, job |
|
with open(job_file, "w") as f: |
|
f.write(json.dumps(job, indent = 4)) |
|
|
|
if not os.path.exists(job_file): |
|
|
|
print(f" -- Beginning new job") |
|
|
|
if len(os.listdir(out_dir)) != 0: |
|
print(f" !! Warning: Output directory is not empty: {out_dir}") |
|
|
|
if in_dir is None: |
|
print(f" ## Error: No input directory specified") |
|
sys.exit() |
|
|
|
if cal_dataset is None: |
|
print(f" ## Error: No calibration dataset specified") |
|
sys.exit() |
|
|
|
job = { "in_dir": in_dir, |
|
"out_dir": out_dir, |
|
"cal_dataset": cal_dataset, |
|
"dataset_rows": dataset_rows, |
|
"measurement_rows": measurement_rows, |
|
"gpu_rows": gpu_rows, |
|
"length": length, |
|
"measurement_length": measurement_length, |
|
"bits": bits, |
|
"head_bits": head_bits, |
|
"progress": "begin", |
|
} |
|
|
|
if reuse_measurement is not None: |
|
|
|
with open(reuse_measurement, "r") as f: |
|
|
|
imp_measurement = json.load(f) |
|
job["measurement"] = imp_measurement["measurement"] |
|
job["last_module_idx"] = imp_measurement["last_module_idx"] |
|
job["base_perplexity"] = imp_measurement["base_perplexity"] |
|
job["reuse_measurement"] = reuse_measurement |
|
|
|
save_job() |
|
|
|
|
|
|
|
else: |
|
|
|
print(f" -- Resuming job") |
|
print(f" !! Note: Overriding options with settings from existing job") |
|
|
|
with open(job_file, "r") as f: |
|
job = json.load(f) |
|
|
|
if "invalid" in job: |
|
print(" ** Error: Corrupted job") |
|
sys.exit() |
|
|
|
job["out_dir"] = out_dir |
|
|
|
|
|
|
|
print(f" -- Input: {job['in_dir']}") |
|
print(f" -- Output: {out_dir}") |
|
print(f" -- Calibration dataset: {job['cal_dataset']}, {job['dataset_rows']} / {job['measurement_rows']} ({job['gpu_rows']}) rows, {job['length']} tokens per sample") |
|
print(f" -- Target bits per weight: {job['bits']} (decoder), {job['head_bits']} (head)") |
|
|
|
|
|
|
|
out_tensor_dir = os.path.join(job["out_dir"], "out_tensor") |
|
if not os.path.exists(out_tensor_dir): |
|
os.makedirs(out_tensor_dir) |
|
|
|
|
|
|
|
while True: |
|
|
|
progress = job["progress"] |
|
|
|
if progress == "begin": |
|
|
|
if "reuse_measurement" in job: |
|
|
|
print(f" -- Reusing measurement: {job['reuse_measurement']}") |
|
job["progress"] = "optimize" |
|
save_job() |
|
|
|
else: |
|
|
|
print(f" -- Tokenizing samples (measurement)...") |
|
tokenize(job, save_job, tokenizer, measure = True) |
|
job["progress"] = "initial_embeddings" |
|
save_job() |
|
|
|
if progress == "initial_embeddings": |
|
|
|
print(f" -- Token embeddings (measurement)...") |
|
embeddings(job, save_job, model) |
|
job["progress"] = "measure_quant" |
|
save_job() |
|
|
|
if progress == "measure_quant": |
|
|
|
print(f" -- Measuring quantization impact...") |
|
measure_quant(job, save_job, model) |
|
job["progress"] = "optimize" |
|
save_job() |
|
|
|
if progress == "optimize": |
|
|
|
print(f" -- Optimizing...") |
|
optimize(job, save_job) |
|
job["progress"] = "tokens_cal" |
|
save_job() |
|
|
|
if progress == "tokens_cal": |
|
|
|
print(f" -- Tokenizing samples...") |
|
tokenize(job, save_job, tokenizer) |
|
job["progress"] = "embeddings" |
|
save_job() |
|
|
|
if progress == "embeddings": |
|
print(f" -- Token embeddings again...") |
|
embeddings(job, save_job, model) |
|
job["progress"] = "quant" |
|
save_job() |
|
|
|
if progress == "quant": |
|
|
|
print(f" -- Quantizing...") |
|
quant(job, save_job, model) |
|
job["progress"] = "compile" |
|
save_job() |
|
|
|
if progress == "compile": |
|
|
|
print(f" -- Compiling output file...") |
|
compile_model(job, save_job, model) |
|
job["progress"] = "finished" |
|
save_job() |
|
|
|
if progress == "finished": break |
|
|
|
print(f" -- Finished") |