Zalmati / convert.py
PetraAI's picture
Upload 21 files
2c2e361 verified
raw
history blame
6.44 kB
from exllamav2 import ExLlamaV2, ExLlamaV2Config, ExLlamaV2Tokenizer
import argparse, os
import sys
import json
from conversion.tokenize import tokenize
from conversion.quantize import embeddings, measure_quant, quant
from conversion.optimize import optimize
from conversion.compile import compile_model
# import tracemalloc
# tracemalloc.start()
parser = argparse.ArgumentParser(description = "Convert model to ExLlamaV2")
parser.add_argument("-i", "--in_dir", type = str, help = "Input directory", default = "")
parser.add_argument("-o", "--out_dir", type = str, help = "Output directory")
parser.add_argument("-c", "--cal_dataset", type = str, help = "Calibration dataset (.parquet file)", default = "")
parser.add_argument("-r", "--dataset_rows", type = int, default = 100, help = "Number of rows to apply from dataset")
parser.add_argument("-mr", "--measurement_rows", type = int, default = 16, help = "Number of rows to apply from dataset when measuring")
parser.add_argument("-gr", "--gpu_rows", type = int, default = 16, help = "Threshold for paging hidden state to CPU")
parser.add_argument("-l", "--length", type = int, default = 2048, help = "Max no. tokens per sample")
parser.add_argument("-ml", "--measurement_length", type = int, default = 2048, help = "Max no. tokens per sample when measuring")
parser.add_argument("-b", "--bits", type = float, default = 4.156, help = "Target bits per weight")
parser.add_argument("-hb", "--head_bits", type = int, default = 6, help = "Target bits per weight (head layer)")
parser.add_argument("-m", "--measurement", type = str, help = "Reuse previous measurement")
args = parser.parse_args()
# Arguments
in_dir = None if args.in_dir == "" else os.path.abspath(args.in_dir)
out_dir = os.path.abspath(args.out_dir)
cal_dataset = None if args.cal_dataset == "" else os.path.abspath(args.cal_dataset)
dataset_rows = args.dataset_rows
measurement_rows = args.measurement_rows
gpu_rows = args.gpu_rows
length = args.length
measurement_length = args.measurement_length
bits = args.bits
head_bits = args.head_bits
reuse_measurement = args.measurement
if not os.path.exists(out_dir):
print(f" ## Error: Directory not found: {out_dir}")
sys.exit()
# Create model without loading weights
config = ExLlamaV2Config()
config.model_dir = in_dir
config.prepare()
model = ExLlamaV2(config)
model.load(lazy = True)
tokenizer = ExLlamaV2Tokenizer(config)
# Job file
job_file = os.path.join(out_dir, "job.json")
# Create new job
def save_job():
global job_file, job
with open(job_file, "w") as f:
f.write(json.dumps(job, indent = 4))
if not os.path.exists(job_file):
print(f" -- Beginning new job")
if len(os.listdir(out_dir)) != 0:
print(f" !! Warning: Output directory is not empty: {out_dir}")
if in_dir is None:
print(f" ## Error: No input directory specified")
sys.exit()
if cal_dataset is None:
print(f" ## Error: No calibration dataset specified")
sys.exit()
job = { "in_dir": in_dir,
"out_dir": out_dir,
"cal_dataset": cal_dataset,
"dataset_rows": dataset_rows,
"measurement_rows": measurement_rows,
"gpu_rows": gpu_rows,
"length": length,
"measurement_length": measurement_length,
"bits": bits,
"head_bits": head_bits,
"progress": "begin",
}
if reuse_measurement is not None:
with open(reuse_measurement, "r") as f:
imp_measurement = json.load(f)
job["measurement"] = imp_measurement["measurement"]
job["last_module_idx"] = imp_measurement["last_module_idx"]
job["base_perplexity"] = imp_measurement["base_perplexity"]
job["reuse_measurement"] = reuse_measurement
save_job()
# Resume existing job
else:
print(f" -- Resuming job")
print(f" !! Note: Overriding options with settings from existing job")
with open(job_file, "r") as f:
job = json.load(f)
if "invalid" in job:
print(" ** Error: Corrupted job")
sys.exit()
job["out_dir"] = out_dir
# Feedback
print(f" -- Input: {job['in_dir']}")
print(f" -- Output: {out_dir}")
print(f" -- Calibration dataset: {job['cal_dataset']}, {job['dataset_rows']} / {job['measurement_rows']} ({job['gpu_rows']}) rows, {job['length']} tokens per sample")
print(f" -- Target bits per weight: {job['bits']} (decoder), {job['head_bits']} (head)")
# Make sure subfolders exist
out_tensor_dir = os.path.join(job["out_dir"], "out_tensor")
if not os.path.exists(out_tensor_dir):
os.makedirs(out_tensor_dir)
# Do the things
while True:
progress = job["progress"]
if progress == "begin":
if "reuse_measurement" in job:
print(f" -- Reusing measurement: {job['reuse_measurement']}")
job["progress"] = "optimize"
save_job()
else:
print(f" -- Tokenizing samples (measurement)...")
tokenize(job, save_job, tokenizer, measure = True)
job["progress"] = "initial_embeddings"
save_job()
if progress == "initial_embeddings":
print(f" -- Token embeddings (measurement)...")
embeddings(job, save_job, model)
job["progress"] = "measure_quant"
save_job()
if progress == "measure_quant":
print(f" -- Measuring quantization impact...")
measure_quant(job, save_job, model)
job["progress"] = "optimize"
save_job()
if progress == "optimize":
print(f" -- Optimizing...")
optimize(job, save_job)
job["progress"] = "tokens_cal"
save_job()
if progress == "tokens_cal":
print(f" -- Tokenizing samples...")
tokenize(job, save_job, tokenizer)
job["progress"] = "embeddings"
save_job()
if progress == "embeddings":
print(f" -- Token embeddings again...")
embeddings(job, save_job, model)
job["progress"] = "quant"
save_job()
if progress == "quant":
print(f" -- Quantizing...")
quant(job, save_job, model)
job["progress"] = "compile"
save_job()
if progress == "compile":
print(f" -- Compiling output file...")
compile_model(job, save_job, model)
job["progress"] = "finished"
save_job()
if progress == "finished": break
print(f" -- Finished")