Model save
Browse files- README.md +69 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: MCG-NJU/videomae-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: videomae-base-finetuned-lift-data-resize
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# videomae-base-finetuned-lift-data-resize
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8146
|
22 |
+
- Accuracy: 0.7681
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 5e-05
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.1
|
48 |
+
- training_steps: 156
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
53 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
54 |
+
| 1.5758 | 0.1282 | 20 | 1.6619 | 0.2901 |
|
55 |
+
| 1.3067 | 1.1282 | 40 | 1.6048 | 0.2990 |
|
56 |
+
| 1.3787 | 2.1282 | 60 | 1.4723 | 0.3181 |
|
57 |
+
| 1.1642 | 3.1282 | 80 | 1.4191 | 0.3004 |
|
58 |
+
| 1.1172 | 4.1282 | 100 | 1.2374 | 0.3196 |
|
59 |
+
| 0.8982 | 5.1282 | 120 | 1.0099 | 0.5655 |
|
60 |
+
| 0.915 | 6.1282 | 140 | 0.9540 | 0.5891 |
|
61 |
+
| 0.7809 | 7.1026 | 156 | 0.9189 | 0.5714 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.45.2
|
67 |
+
- Pytorch 2.0.1+cu118
|
68 |
+
- Datasets 3.0.1
|
69 |
+
- Tokenizers 0.20.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 344946604
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8bf3a4a520ef8ae077923dfc6b355c4585440136cbfcd81efc89655f6b7af21
|
3 |
size 344946604
|