File size: 2,579 Bytes
3f500d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224-in22k
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224-in22k-food101-24-12
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: food101
      type: food101
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9312475247524753
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-base-patch4-window7-224-in22k-food101-24-12

This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co./microsoft/swin-base-patch4-window7-224-in22k) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2524
- Accuracy: 0.9312

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.8657        | 1.0   | 789  | 0.4698          | 0.8663   |
| 0.7506        | 2.0   | 1578 | 0.3419          | 0.9006   |
| 0.6379        | 3.0   | 2367 | 0.3061          | 0.9116   |
| 0.5223        | 4.0   | 3157 | 0.2906          | 0.9149   |
| 0.4989        | 5.0   | 3946 | 0.2783          | 0.9205   |
| 0.4163        | 6.0   | 4735 | 0.2732          | 0.9225   |
| 0.3954        | 7.0   | 5524 | 0.2675          | 0.9255   |
| 0.3466        | 8.0   | 6314 | 0.2710          | 0.9240   |
| 0.3666        | 9.0   | 7103 | 0.2625          | 0.9275   |
| 0.2085        | 10.0  | 7892 | 0.2578          | 0.9295   |
| 0.263         | 11.0  | 8681 | 0.2563          | 0.9302   |
| 0.2171        | 12.0  | 9468 | 0.2524          | 0.9312   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1