File size: 12,266 Bytes
fcb25d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" PyTorch Phi-MoE model."""


from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)


PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "microsoft/Phi-3.5-MoE-instruct": "https://huggingface.co./microsoft/Phi-3.5-MoE-instruct/resolve/main/config.json",
}

class PhiMoEConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`PhiMoEModel`]. It is used to instantiate a Phi-MoE
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the
    [microsoft/Phi-3.5-MoE-instruct](https://huggingface.co./microsoft/Phi-3.5-MoE-instruct).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32064):
            Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`PhiMoEModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 6400):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`dict`, *optional*):
            The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
            contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
            `original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
            be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
            the attention head size and the `original_max_position_embeddings` must be an integer.
        sliding_window (`int`, *optional*):
            Sliding window attention window size. If not specified, will default to `262144`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        num_experts_per_tok (`int`, *optional*, defaults to 2):
            The number of experts to root per-token, can be also interpreted as the `top-p` routing
            parameter
        num_local_experts (`int`, *optional*, defaults to 16):
            Number of experts per Sparse MLP layer.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabeling this will also
            allow the model to output the auxiliary loss. See [here]() for more details
        router_aux_loss_coef (`float`, *optional*, defaults to 0.0):
            The aux loss factor for the total loss.
        router_jitter_noise (`float`, *optional*, defaults to 0.01):
            Amount of noise to add to the router.

    ```python
    >>> from transformers import PhiMoEModel, PhiMoEConfig

    >>> # Initializing a Phi-3 style configuration
    >>> configuration = PhiMoEConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")

    >>> # Initializing a model from the configuration
    >>> model = PhiMoEModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    
    model_type = "phimoe"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32064,
        hidden_size=4096,
        intermediate_size=6400,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=8,
        hidden_act="silu",
        max_position_embeddings=4096 * 32,
        initializer_range=0.02,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        rope_theta=1e6,
        rope_scaling=None,
        sliding_window=None,
        attention_dropout=0.0,
        num_experts_per_tok=2,
        num_local_experts=16,
        output_router_logits=False,
        router_aux_loss_coef=0.001,
        router_jitter_noise=0.01,
        input_jitter_noise=0.0,
        attention_bias = False,
        lm_head_bias = False,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.sliding_window = sliding_window
        self.attention_bias = attention_bias
        self.lm_head_bias = lm_head_bias
        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout

        self.num_experts_per_tok = num_experts_per_tok
        self.num_local_experts = num_local_experts
        self.output_router_logits = output_router_logits
        self.router_aux_loss_coef = router_aux_loss_coef
        self.router_jitter_noise = router_jitter_noise
        self.input_jitter_noise = input_jitter_noise

        self.rope_scaling = rope_scaling
        self._rope_scaling_validation()

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6:
            raise ValueError(
                "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, "
                f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
        rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
        rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None)
        rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None)
        original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
        if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
            raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
        if not (
            isinstance(rope_scaling_short_factor, list)
            and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
        ):
            raise ValueError(
                f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
            )
        if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
            raise ValueError(
                f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
            )
        if not (
            isinstance(rope_scaling_long_factor, list)
            and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
        ):
            raise ValueError(
                f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
            )
        if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
            raise ValueError(
                f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
            )
        if not isinstance(rope_scaling_short_mscale, (int, float)):
            raise ValueError(
                f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}"
            )
        if not isinstance(rope_scaling_long_mscale, (int, float)):
            raise ValueError(
                f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}"
            )
        if not isinstance(original_max_position_embeddings, int):
            raise ValueError(
                f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}"
            )