File size: 2,976 Bytes
ba633e6 13e3927 ba633e6 713f663 13e3927 07821a7 13e3927 713f663 294daba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
language:
- en
license: mit
datasets:
- code_x_glue_ct_code_to_text
metrics:
- bleu
- sacrebleu
---
# Codet5+ 220m Py Sum
This Model is based on the [CodeT5+ (220m)](https://huggingface.co./Salesforce/codet5p-220m) from salesforce and was finetuned for the code summarization task by using the [XCodeGlue](https://github.com/microsoft/CodeXGLUE) Dataset. The Code is accessible on [Github](https://github.com/Paul-B98/mdl-ii).
## Results
| Modell | BLEU |
| ------ | ---- |
| [CodeT5-base-sum-python](https://huggingface.co./Salesforce/codet5-base-codexglue-sum-python) | 23.564 |
| [CodeT5-base-multi-sum](https://huggingface.co./Salesforce/codet5-base-multi-sum) | 23.985 |
| [Code-Trans-S-ST](https://huggingface.co./SEBIS/code_trans_t5_small_code_documentation_generation_python) | 5.495 |
| [Code-Trans-S-TF](https://huggingface.co./SEBIS/code_trans_t5_small_code_documentation_generation_python_transfer_learning_finetune) | 21.093 |
| [Code-Trans-S-MT](https://huggingface.co./SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask) | 5.450 |
| [Code-Trans-S-MT-TF](https://huggingface.co./SEBIS/code_trans_t5_small_code_documentation_generation_python_multitask_finetune) | 16.378 |
| [Code-Trans-B-ST](https://huggingface.co./SEBIS/code_trans_t5_base_code_documentation_generation_python) | 4.638 |
| [Code-Trans-B-TF](https://huggingface.co./SEBIS/code_trans_t5_base_code_documentation_generation_python_transfer_learning_finetune) | 21.671 |
| [Code-Trans-B-MT](https://huggingface.co./SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask) | 2.957 |
| [Code-Trans-B-MT-TF](https://huggingface.co./SEBIS/code_trans_t5_base_code_documentation_generation_python_multitask_finetune) | 13.766 |
| [Code-Trans-L-TF](https://huggingface.co./SEBIS/code_trans_t5_large_code_documentation_generation_python_transfer_learning_finetune) | 23.306 |
| [Code-Trans-L-MT](https://huggingface.co./SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask) | 13.487 |
| [Code-Trans-L-MT-TF](https://huggingface.co./SEBIS/code_trans_t5_large_code_documentation_generation_python_multitask_finetune) | 16.362 |
| **CodeT5+ 220m Py Sum***| 25.245 |
## Example on how to use
The model can be easily download from Huggingface and used in a summarization pipeline.
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
pipeline = SummarizationPipeline(
model=AutoModelWithLMHead.from_pretrained("Paul-B98/codet5p_220m_py_sum"),
tokenizer=AutoTokenizer.from_pretrained("Salesforce/codet5p-220m"),
device=0
)
example_method = """
def greet(name):
print(f"Hello, {name}!")
"""
pipeline([example_method])[0]["summary_text"]
``` |