File size: 3,096 Bytes
9dd9a2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
aws_output_bucket: s3://panda-us-west-2/experiments/llama2.13b.wudao.sft.combine.legal.v1.0.seq2k.w16.adamw.NA100.0921.ds
data_dir: null
dist_load_data_barrier: false
train_file: data/files/tmp.json
dev_file: null
test_file: null
model:
_target_: models.llama.LlamaForConditionalGeneration.from_pretrained
use_peft: false
gradient_checkpointing: true
enable_flash_attention: true
flash_attention_vanilla_torch: true
read_tensor:
_target_: data.collators.zh_instruct.TextDatasetUnifyV3
pair_file_list: null
extended_vocab: null
collator:
_target_: data.collators.flan.FlanCollatorOverCollator
collator: null
max_seq_length: 2048
tokenizer: ${model_name_or_path}
decoder_only: true
padding: longest
padding_side: right
num_workers: 4
prefetch_factor: 2
do_preprocess: false
model_name_or_path: /tmp/llama2.13b.wudao.sft.combine.v1.0.seq2k.w16.adamw.NA100.0803.ds/checkpoint-1750
pretrain: null
exp_name: llama2.13b.wudao.sft.combine.legal.v1.0.seq2k.w16.adamw.NA100.0921.ds
exp_notes: null
output_dir: /tmp/${exp_name}
resume: null
do_train: true
evaluate_during_training: false
do_eval: false
eval_sub_path: checkpoint-*
per_gpu_train_batch_size: 2
per_gpu_eval_batch_size: 1
learning_rate: 1.0e-06
gradient_accumulation_steps: 8
weight_decay: 0.01
adam_epsilon: 1.0e-06
adam_betas: (0.9, 0.99)
max_grad_norm: 1.0
num_train_epochs: 1
total_dataset_len: -1
max_steps: 0
warmup_proportion: 0
warmup_steps: 0
optimizer: null
use_nvlamb: null
bit_training: null
logging_steps: 1
save_best: false
save_steps: 250
eval_steps: 250
ddp_eval: true
no_cuda: false
seed: 42
local_rank: 0
fp16: true
fp16_opt_level: O1
fp16_bfloat16: true
prediction_cfg:
metric: acc
measure: 1
best_checkpoint: null
best_result: null
eval_forward_fn:
_target_: general_util.evaluator.DiscriminatorForwardFn
post_process: null
fairscale_config:
_target_: general_util.fsdp_utils.default_initialize
fp16: ${fp16}
move_grads_to_cpu: false
move_params_to_cpu: false
flatten_parameters: false
with_lightseq: false
load_lr_scheduler_states: false
ds_cfg:
train_micro_batch_size_per_gpu: ${per_gpu_train_batch_size}
gradient_accumulation_steps: ${gradient_accumulation_steps}
optimizer:
type: AdamW
params:
lr: ${learning_rate}
betas:
- 0.9
- 0.96
eps: ${adam_epsilon}
weight_decay: ${weight_decay}
scheduler:
type: WarmupDecayLR
params:
total_num_steps: 1474
warmup_max_lr: ${learning_rate}
warmup_num_steps: 0
warmup_type: linear
gradient_clipping: ${max_grad_norm}
bf16:
enabled: ${fp16}
zero_optimization:
stage: 1
contiguous_gradients: true
overlap_comm: true
reduce_scatter: true
reduce_bucket_size: 500000000.0
allgather_bucket_size: 500000000.0
offload_optimizer:
device: cpu
pin_memory: true
steps_per_print: 1
summary_helper:
_target_: general_util.tensorboard_helper.WandbWriter
batch_index_or_keys: null
outputs_index_or_keys: null
n_gpu: 1
device: cuda:0
train_batch_size: 2
eval_batch_size: null
world_size: 16
world_rank: null
|