--- library_name: transformers language: - ur license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 model-index: - name: Whisper Small ur - Urdu results: [] metrics: - cer pipeline_tag: automatic-speech-recognition --- # Whisper Small ur - Urdu This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.9090 - Cer: 31.9947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0017 | 31.256 | 1000 | 0.9090 | 31.9947 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.0 - Datasets 3.2.0 - Tokenizers 0.21.0