mwz commited on
Commit
4fb3065
·
verified ·
1 Parent(s): 5e91a33

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -68
README.md CHANGED
@@ -1,68 +1,71 @@
1
- ---
2
- library_name: transformers
3
- language:
4
- - ur
5
- license: apache-2.0
6
- base_model: openai/whisper-small
7
- tags:
8
- - hf-asr-leaderboard
9
- - generated_from_trainer
10
- datasets:
11
- - mozilla-foundation/common_voice_16_0
12
- model-index:
13
- - name: Whisper Small ur - Urdu
14
- results: []
15
- ---
16
-
17
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
- should probably proofread and complete it, then remove this comment. -->
19
-
20
- # Whisper Small ur - Urdu
21
-
22
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset.
23
- It achieves the following results on the evaluation set:
24
- - Loss: 0.9090
25
- - Cer: 31.9947
26
-
27
- ## Model description
28
-
29
- More information needed
30
-
31
- ## Intended uses & limitations
32
-
33
- More information needed
34
-
35
- ## Training and evaluation data
36
-
37
- More information needed
38
-
39
- ## Training procedure
40
-
41
- ### Training hyperparameters
42
-
43
- The following hyperparameters were used during training:
44
- - learning_rate: 1e-05
45
- - train_batch_size: 16
46
- - eval_batch_size: 8
47
- - seed: 42
48
- - gradient_accumulation_steps: 4
49
- - total_train_batch_size: 64
50
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
51
- - lr_scheduler_type: linear
52
- - lr_scheduler_warmup_steps: 50
53
- - training_steps: 1000
54
- - mixed_precision_training: Native AMP
55
-
56
- ### Training results
57
-
58
- | Training Loss | Epoch | Step | Validation Loss | Cer |
59
- |:-------------:|:------:|:----:|:---------------:|:-------:|
60
- | 0.0017 | 31.256 | 1000 | 0.9090 | 31.9947 |
61
-
62
-
63
- ### Framework versions
64
-
65
- - Transformers 4.47.1
66
- - Pytorch 2.5.0
67
- - Datasets 3.2.0
68
- - Tokenizers 0.21.0
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - ur
5
+ license: apache-2.0
6
+ base_model: openai/whisper-small
7
+ tags:
8
+ - hf-asr-leaderboard
9
+ - generated_from_trainer
10
+ datasets:
11
+ - mozilla-foundation/common_voice_16_0
12
+ model-index:
13
+ - name: Whisper Small ur - Urdu
14
+ results: []
15
+ metrics:
16
+ - cer
17
+ pipeline_tag: automatic-speech-recognition
18
+ ---
19
+
20
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
21
+ should probably proofread and complete it, then remove this comment. -->
22
+
23
+ # Whisper Small ur - Urdu
24
+
25
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.0 dataset.
26
+ It achieves the following results on the evaluation set:
27
+ - Loss: 0.9090
28
+ - Cer: 31.9947
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 1e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 64
53
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_steps: 50
56
+ - training_steps: 1000
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Cer |
62
+ |:-------------:|:------:|:----:|:---------------:|:-------:|
63
+ | 0.0017 | 31.256 | 1000 | 0.9090 | 31.9947 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.47.1
69
+ - Pytorch 2.5.0
70
+ - Datasets 3.2.0
71
+ - Tokenizers 0.21.0