--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: xlm-roberta-base-finetuned-detests24 results: [] --- # xlm-roberta-base-finetuned-detests24 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0941 - Accuracy: 0.8151 - F1-score: 0.7439 - Precision: 0.7380 - Recall: 0.7509 - Auc: 0.7509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:| | 0.4432 | 1.0 | 153 | 0.4079 | 0.8298 | 0.7158 | 0.7778 | 0.6893 | 0.6893 | | 0.4326 | 2.0 | 306 | 0.5061 | 0.7447 | 0.7078 | 0.7052 | 0.7840 | 0.7840 | | 0.2533 | 3.0 | 459 | 0.5227 | 0.7676 | 0.7195 | 0.7070 | 0.7709 | 0.7709 | | 0.3354 | 4.0 | 612 | 0.5113 | 0.8347 | 0.7689 | 0.7645 | 0.7737 | 0.7737 | | 0.2157 | 5.0 | 765 | 0.8228 | 0.8020 | 0.7484 | 0.7321 | 0.7830 | 0.7830 | | 0.1815 | 6.0 | 918 | 0.9407 | 0.8036 | 0.7528 | 0.7359 | 0.7917 | 0.7917 | | 0.0829 | 7.0 | 1071 | 0.9539 | 0.8363 | 0.7648 | 0.7676 | 0.7621 | 0.7621 | | 0.1077 | 8.0 | 1224 | 0.9649 | 0.8200 | 0.7501 | 0.7445 | 0.7566 | 0.7566 | | 0.0473 | 9.0 | 1377 | 1.0557 | 0.8200 | 0.7439 | 0.7439 | 0.7439 | 0.7439 | | 0.0632 | 10.0 | 1530 | 1.0941 | 0.8151 | 0.7439 | 0.7380 | 0.7509 | 0.7509 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1