File size: 1,747 Bytes
cddea76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
base_model: BSC-TeMU/roberta-base-bne
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: roberta-base-bne-finetuned-detests-wandb24
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-bne-finetuned-detests-wandb24

This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co./BSC-TeMU/roberta-base-bne) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4065
- Accuracy: 0.8527
- F1-score: 0.7826
- Precision: 0.7945
- Recall: 0.7727
- Auc: 0.7727

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:|
| 0.3296        | 1.0   | 77   | 0.3456          | 0.8543   | 0.7671   | 0.8142    | 0.7408 | 0.7408 |
| 0.1555        | 2.0   | 154  | 0.4065          | 0.8527   | 0.7826   | 0.7945    | 0.7727 | 0.7727 |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1