File size: 2,504 Bytes
e323171
 
dccde0f
e323171
 
 
 
dccde0f
 
e323171
 
 
 
 
 
 
 
 
 
 
 
dccde0f
 
 
 
 
 
e323171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dccde0f
 
 
 
 
 
 
 
 
 
 
 
e323171
 
 
 
dccde0f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: cc
base_model: davidmasip/racism
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: racism-finetuned-detests
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# racism-finetuned-detests

This model is a fine-tuned version of [davidmasip/racism](https://huggingface.co./davidmasip/racism) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1626
- Accuracy: 0.8331
- F1-score: 0.7625
- Precision: 0.7625
- Recall: 0.7625
- Auc: 0.7625

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc    |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:|
| 0.2554        | 1.0   | 174  | 0.3618          | 0.8380   | 0.7340   | 0.7901    | 0.7073 | 0.7073 |
| 0.0488        | 2.0   | 348  | 0.7445          | 0.8282   | 0.7549   | 0.7556    | 0.7543 | 0.7543 |
| 0.0005        | 3.0   | 522  | 0.9204          | 0.8429   | 0.7681   | 0.7794    | 0.7587 | 0.7587 |
| 0.0001        | 4.0   | 696  | 1.0194          | 0.8462   | 0.7741   | 0.7838    | 0.7659 | 0.7659 |
| 0.0001        | 5.0   | 870  | 1.0721          | 0.8363   | 0.7648   | 0.7676    | 0.7621 | 0.7621 |
| 0.0001        | 6.0   | 1044 | 1.1081          | 0.8331   | 0.7625   | 0.7625    | 0.7625 | 0.7625 |
| 0.0           | 7.0   | 1218 | 1.1324          | 0.8331   | 0.7625   | 0.7625    | 0.7625 | 0.7625 |
| 0.0           | 8.0   | 1392 | 1.1492          | 0.8331   | 0.7625   | 0.7625    | 0.7625 | 0.7625 |
| 0.0           | 9.0   | 1566 | 1.1592          | 0.8331   | 0.7625   | 0.7625    | 0.7625 | 0.7625 |
| 0.0           | 10.0  | 1740 | 1.1626          | 0.8331   | 0.7625   | 0.7625    | 0.7625 | 0.7625 |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3