Fill-Mask
Transformers
PyTorch
Portuguese
deberta-v2
albertina-pt*
albertina-100m-portuguese-ptpt
albertina-100m-portuguese-ptbr
albertina-900m-portuguese-ptpt
albertina-900m-portuguese-ptbr
albertina-1b5-portuguese-ptpt
albertina-1b5-portuguese-ptbr
bert
deberta
portuguese
encoder
foundation model
Inference Endpoints
jarodrigues
commited on
Commit
•
7ba88d8
1
Parent(s):
0adcda1
Update README.md
Browse files
README.md
CHANGED
@@ -132,10 +132,10 @@ We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Trans
|
|
132 |
|
133 |
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
|
134 |
|-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
|
135 |
-
| **Albertina 1.5B PTPT** | **0.8809** | 0.4742 | 0.8457 | **0.9034** | **0.8433** | **0.7840** | **0.7688** | **0.8602** |
|
136 |
-
| **Albertina 1.5B PTPT 256** | 0.8809 | 0.5493 | 0.8752 | 0.8795 | 0.8400 | 0.5832 | 0.6791 | 0.8496 |
|
137 |
-
| **Albertina 900M PTPT** | 0.8339 | 0.4225 | **0.9171**| 0.8801 | 0.7033 | 0.6018 | 0.6728 | 0.8224 |
|
138 |
-
| **Albertina 100M PTPT** | 0.6919 | 0.4742 | 0.8047 | 0.8590 | n.a. | 0.4529 | 0.6481 | 0.7578 |
|
139 |
||||||||||
|
140 |
| **DeBERTa 1.5B (English)** | 0.8147 | 0.4554 | 0.8696 | 0.8557 | 0.5167 | 0.4901 | 0.6687 | 0.8347 |
|
141 |
| **DeBERTa 100M (English)** | 0.6029 | **0.5634** | 0.7802 | 0.8320 | n.a. | 0.4698 | 0.6368 | 0.6829 |
|
@@ -147,11 +147,11 @@ We automatically translated the tasks from GLUE and SUPERGLUE using [DeepL Trans
|
|
147 |
|
148 |
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
|
149 |
|-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
|
150 |
-
| **Albertina 1.5B PTBR** | **0.8676** | 0.4742 | 0.8622 | **0.9007** | 0.7767 | 0.6372 | **0.7667** | **0.8654** |
|
151 |
-
| **Albertina 1.5B PTBR 256** | 0.8123 | 0.4225 | 0.8638 | 0.8968 | **0.8533** | **0.6884** | 0.6799 | 0.8509 |
|
152 |
-
| **Albertina 900M PTBR** | 0.7545 | 0.4601 | **0.9071**| 0.8910 | 0.7767 | 0.5799 | 0.6731 | 0.8385 |
|
153 |
| **BERTimbau (335M)** | 0.6446 | **0.5634** | 0.8873 | 0.8842 | 0.6933 | 0.5438 | 0.6787 | 0.7783 |
|
154 |
-
| **Albertina 100M PTBR** | 0.6582 | **0.5634** | 0.8149 | 0.8489 | n.a. | 0.4771 | 0.6469 | 0.7537 |
|
155 |
||||||||||
|
156 |
| **DeBERTa 1.5B (English)** | 0.7112 | **0.5634** | 0.8545 | 0.0123 | 0.5700 | 0.4307 | 0.3639 | 0.6217 |
|
157 |
| **DeBERTa 100M (English)** | 0.5716 | 0.5587 | 0.8060 | 0.8266 | n.a. | 0.4739 | 0.6391 | 0.6838 |
|
|
|
132 |
|
133 |
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
|
134 |
|-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
|
135 |
+
| [**Albertina 1.5B PTPT**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptpt-encoder) | **0.8809** | 0.4742 | 0.8457 | **0.9034** | **0.8433** | **0.7840** | **0.7688** | **0.8602** |
|
136 |
+
| [**Albertina 1.5B PTPT 256**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptpt-encoder-256) | 0.8809 | 0.5493 | 0.8752 | 0.8795 | 0.8400 | 0.5832 | 0.6791 | 0.8496 |
|
137 |
+
| [**Albertina 900M PTPT**](https://huggingface.co/PORTULAN/albertina-900m-portuguese-ptpt-encoder) | 0.8339 | 0.4225 | **0.9171**| 0.8801 | 0.7033 | 0.6018 | 0.6728 | 0.8224 |
|
138 |
+
| [**Albertina 100M PTPT**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptpt-encoder) | 0.6919 | 0.4742 | 0.8047 | 0.8590 | n.a. | 0.4529 | 0.6481 | 0.7578 |
|
139 |
||||||||||
|
140 |
| **DeBERTa 1.5B (English)** | 0.8147 | 0.4554 | 0.8696 | 0.8557 | 0.5167 | 0.4901 | 0.6687 | 0.8347 |
|
141 |
| **DeBERTa 100M (English)** | 0.6029 | **0.5634** | 0.7802 | 0.8320 | n.a. | 0.4698 | 0.6368 | 0.6829 |
|
|
|
147 |
|
148 |
| Model | RTE (Accuracy) | WNLI (Accuracy)| MRPC (F1) | STS-B (Pearson) | COPA (Accuracy) | CB (F1) | MultiRC (F1) | BoolQ (Accuracy) |
|
149 |
|-------------------------------|----------------|----------------|-----------|-----------------|-----------------|------------|--------------|------------------|
|
150 |
+
| [**Albertina 1.5B PTBR**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptbr-encoder) | **0.8676** | 0.4742 | 0.8622 | **0.9007** | 0.7767 | 0.6372 | **0.7667** | **0.8654** |
|
151 |
+
| [**Albertina 1.5B PTBR 256**](https://huggingface.co/PORTULAN/albertina-1b5-portuguese-ptbr-encoder-256) | 0.8123 | 0.4225 | 0.8638 | 0.8968 | **0.8533** | **0.6884** | 0.6799 | 0.8509 |
|
152 |
+
| [**Albertina 900M PTBR**](https://huggingface.co/PORTULAN/albertina-900m-portuguese-ptbr-encoder) | 0.7545 | 0.4601 | **0.9071**| 0.8910 | 0.7767 | 0.5799 | 0.6731 | 0.8385 |
|
153 |
| **BERTimbau (335M)** | 0.6446 | **0.5634** | 0.8873 | 0.8842 | 0.6933 | 0.5438 | 0.6787 | 0.7783 |
|
154 |
+
| [**Albertina 100M PTBR**](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptbr-encoder) | 0.6582 | **0.5634** | 0.8149 | 0.8489 | n.a. | 0.4771 | 0.6469 | 0.7537 |
|
155 |
||||||||||
|
156 |
| **DeBERTa 1.5B (English)** | 0.7112 | **0.5634** | 0.8545 | 0.0123 | 0.5700 | 0.4307 | 0.3639 | 0.6217 |
|
157 |
| **DeBERTa 100M (English)** | 0.5716 | 0.5587 | 0.8060 | 0.8266 | n.a. | 0.4739 | 0.6391 | 0.6838 |
|