File size: 2,082 Bytes
0a912d5 99ea80c 0a912d5 99ea80c 0a912d5 99ea80c 0a912d5 99ea80c 0a912d5 99ea80c 0a912d5 99ea80c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
tags:
- Chat Model
- SFT
- RLHF
license: llama3
---
# Llama3-PBM-Nova-70B
## Introduction
Llama3-PBM-Nova-70B is a chat model developed by PKU-Baichuan-MLSysLab, based on the Llama3-70B. In order to better utilize open-source data, we've performed deduplication, quality filtering, and data synthesis on it. Then, through Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), we've significantly enhanced the base model's performance.
- **Developed by:** [PKU-Baichuan-MLSysLab](https://github.com/PKU-Baichuan-MLSystemLab)
- **Base Model:** [Llama-3-70B](https://huggingface.co./meta-llama/Meta-Llama-3-70B)
- **Model Type:** Chat Model
- **Training Method:** SFT + RLHF
- **Release Date:** August 2024
## Evaluation
| Model | Arena-Hard | MixEval-Hard | Alpaca-Eval 2.0 |
|------------------------|------------|--------------|-----------------|
| GPT-4Turbo(04/09) | 82.6% | 62.6 | 55.0% |
| GPT-4o(05/13) | 79.2% | 64.7 | 57.5% |
| Gemini 1.5 Pro | 72.0% | 58.3 | - |
| Llama3-PBM-Nova-70B | 74.5% | 58.1 | 61.23% |
| Llama-3.1-70B-Instruct | 55.7% | - | 38.1% |
| Llama-3-70B-Instruct | 46.6 | 55.9 | 34.4% |
## Usage
Below is an example of how to use this model based on the Transformers library.
```
import transformers
import torch
model_id = "PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "user", "content": "Who are you?"},
]
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
messages,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][-1])
```
|