|
""" |
|
Train the script |
|
|
|
Need to set the TPU address first: |
|
export XRT_TPU_CONFIG="localservice;0;localhost:51011" |
|
""" |
|
|
|
import torch.multiprocessing as mp |
|
import threading |
|
import time |
|
import random |
|
import sys |
|
import argparse |
|
import gzip |
|
import json |
|
import logging |
|
import tqdm |
|
import torch |
|
from torch import nn |
|
from torch.utils.data import DataLoader |
|
import torch |
|
import torch_xla |
|
import torch_xla.core |
|
import torch_xla.core.functions |
|
import torch_xla.core.xla_model as xm |
|
import torch_xla.distributed.xla_multiprocessing as xmp |
|
import torch_xla.distributed.parallel_loader as pl |
|
import os |
|
from shutil import copyfile |
|
|
|
|
|
from transformers import ( |
|
AdamW, |
|
AutoModel, |
|
AutoTokenizer, |
|
get_linear_schedule_with_warmup, |
|
set_seed, |
|
) |
|
|
|
class AutoModelForSentenceEmbedding(nn.Module): |
|
def __init__(self, model_name, tokenizer, args): |
|
super(AutoModelForSentenceEmbedding, self).__init__() |
|
|
|
assert args.pooling in ['mean', 'cls'] |
|
|
|
self.model = AutoModel.from_pretrained(model_name) |
|
self.normalize = not args.no_normalize |
|
self.tokenizer = tokenizer |
|
self.pooling = args.pooling |
|
|
|
def forward(self, **kwargs): |
|
model_output = self.model(**kwargs) |
|
if self.pooling == 'mean': |
|
embeddings = self.mean_pooling(model_output, kwargs['attention_mask']) |
|
elif self.pooling == 'cls': |
|
embeddings = self.cls_pooling(model_output, kwargs['attention_mask']) |
|
|
|
if self.normalize: |
|
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) |
|
|
|
return embeddings |
|
|
|
def mean_pooling(self, model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
def cls_pooling(self, model_output, attention_mask): |
|
return model_output[0][:,0] |
|
|
|
def save_pretrained(self, output_path): |
|
if xm.is_master_ordinal(): |
|
self.tokenizer.save_pretrained(output_path) |
|
self.model.config.save_pretrained(output_path) |
|
|
|
xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin")) |
|
|
|
|
|
|
|
|
|
def train_function(index, args, queue): |
|
tokenizer = AutoTokenizer.from_pretrained(args.model) |
|
model = AutoModelForSentenceEmbedding(args.model, tokenizer, args) |
|
|
|
|
|
|
|
device = xm.xla_device() |
|
model = model.to(device) |
|
|
|
|
|
optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True) |
|
|
|
lr_scheduler = get_linear_schedule_with_warmup( |
|
optimizer=optimizer, |
|
num_warmup_steps=500, |
|
num_training_steps=args.steps, |
|
) |
|
|
|
|
|
cross_entropy_loss = nn.CrossEntropyLoss() |
|
max_grad_norm = 1 |
|
|
|
model.train() |
|
|
|
for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()): |
|
|
|
batch = queue.get() |
|
|
|
|
|
|
|
if len(batch[0]) == 2: |
|
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length_a, truncation=True, padding="max_length") |
|
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length") |
|
|
|
|
|
embeddings_a = model(**text1.to(device)) |
|
embeddings_b = model(**text2.to(device)) |
|
|
|
|
|
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a) |
|
embeddings_b = torch_xla.core.functions.all_gather(embeddings_b) |
|
|
|
|
|
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale |
|
|
|
|
|
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) |
|
|
|
|
|
loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2 |
|
|
|
else: |
|
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length_a, truncation=True, padding="max_length") |
|
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length") |
|
text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length_b, truncation=True, padding="max_length") |
|
|
|
embeddings_a = model(**text1.to(device)) |
|
embeddings_b1 = model(**text2.to(device)) |
|
embeddings_b2 = model(**text3.to(device)) |
|
|
|
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a) |
|
embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1) |
|
embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2) |
|
|
|
embeddings_b = torch.cat([embeddings_b1, embeddings_b2]) |
|
|
|
|
|
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale |
|
|
|
|
|
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) |
|
|
|
|
|
loss = cross_entropy_loss(scores, labels) |
|
|
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) |
|
|
|
xm.optimizer_step(optimizer, barrier=True) |
|
lr_scheduler.step() |
|
|
|
|
|
|
|
if (global_step+1) % args.save_steps == 0: |
|
output_path = os.path.join(args.output, str(global_step+1)) |
|
xm.master_print("save model: "+output_path) |
|
model.save_pretrained(output_path) |
|
|
|
|
|
output_path = os.path.join(args.output, "final") |
|
xm.master_print("save model final: "+ output_path) |
|
model.save_pretrained(output_path) |
|
|
|
|
|
def produce_data(args, queue, filepaths, dataset_indices): |
|
global_batch_size = args.batch_size*args.nprocs |
|
num_same_dataset = int(args.nprocs / args.datasets_per_batch) |
|
print("producer", "global_batch_size", global_batch_size) |
|
print("producer", "num_same_dataset", num_same_dataset) |
|
|
|
datasets = [] |
|
for filepath in filepaths: |
|
if "reddit_" in filepath: |
|
data_obj = RedditDataset(filepath) |
|
else: |
|
data_obj = Dataset(filepath) |
|
datasets.append(iter(data_obj)) |
|
|
|
|
|
num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)} |
|
|
|
while True: |
|
texts_in_batch = set() |
|
batch_format = None |
|
|
|
|
|
for _ in range(args.datasets_per_batch): |
|
valid_dataset = False |
|
while not valid_dataset: |
|
data_idx = random.choice(dataset_indices) |
|
if batch_format is None: |
|
batch_format = num_cols[data_idx] |
|
valid_dataset = True |
|
else: |
|
valid_dataset = (batch_format == num_cols[data_idx]) |
|
|
|
|
|
dataset = datasets[data_idx] |
|
local_batch_size = args.batch_size |
|
if batch_format == 3 and args.batch_size_triplets is not None: |
|
local_batch_size = args.batch_size_triplets |
|
|
|
for _ in range(num_same_dataset): |
|
for _ in range(args.nprocs): |
|
batch_device = [] |
|
while len(batch_device) < local_batch_size: |
|
sample = next(dataset) |
|
in_batch = False |
|
for text in sample: |
|
if text in texts_in_batch: |
|
in_batch = True |
|
break |
|
|
|
if not in_batch: |
|
for text in sample: |
|
texts_in_batch.add(text) |
|
batch_device.append(sample) |
|
|
|
queue.put(batch_device) |
|
|
|
|
|
class RedditDataset: |
|
""" |
|
A class that handles the reddit data files |
|
""" |
|
def __init__(self, filepath): |
|
self.filepath = filepath |
|
|
|
def __iter__(self): |
|
while True: |
|
with gzip.open(self.filepath, "rt") as fIn: |
|
for line in fIn: |
|
data = json.loads(line) |
|
|
|
if "response" in data and "context" in data: |
|
yield [data["response"], data["context"]] |
|
|
|
class Dataset: |
|
""" |
|
A class that handles one dataset |
|
""" |
|
def __init__(self, filepath): |
|
self.filepath = filepath |
|
|
|
def __iter__(self): |
|
max_dataset_size = 20*1000*1000 |
|
dataset = [] |
|
data_format = None |
|
|
|
while dataset is None or len(dataset) == 0: |
|
with gzip.open(self.filepath, "rt") as fIn: |
|
for line in fIn: |
|
data = json.loads(line) |
|
if isinstance(data, dict): |
|
data = data['texts'] |
|
|
|
if data_format is None: |
|
data_format = len(data) |
|
|
|
|
|
assert len(data) == data_format |
|
|
|
if dataset is not None: |
|
dataset.append(data) |
|
if len(dataset) >= max_dataset_size: |
|
dataset = None |
|
|
|
yield data |
|
|
|
|
|
|
|
while True: |
|
random.shuffle(dataset) |
|
for data in dataset: |
|
yield data |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased') |
|
parser.add_argument('--steps', type=int, default=2000) |
|
parser.add_argument('--save_steps', type=int, default=10000) |
|
parser.add_argument('--batch_size', type=int, default=64) |
|
parser.add_argument('--batch_size_triplets', type=int, default=None) |
|
parser.add_argument('--max_length_a', type=int, default=128) |
|
parser.add_argument('--max_length_b', type=int, default=128) |
|
parser.add_argument('--nprocs', type=int, default=8) |
|
parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch") |
|
parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product") |
|
parser.add_argument('--no_normalize', action="store_true", default=False, help="If set: Embeddings are not normalized") |
|
parser.add_argument('--pooling', default='mean') |
|
parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files") |
|
parser.add_argument('data_config', help="A data_config.json file") |
|
parser.add_argument('output') |
|
args = parser.parse_args() |
|
|
|
|
|
assert (args.nprocs % args.datasets_per_batch) == 0 |
|
|
|
|
|
logging.info("Output: "+args.output) |
|
if os.path.exists(args.output): |
|
print("Output folder already exists.") |
|
input("Continue?") |
|
|
|
|
|
os.makedirs(args.output, exist_ok=True) |
|
|
|
data_config_path = os.path.join(args.output, 'data_config.json') |
|
copyfile(args.data_config, data_config_path) |
|
|
|
train_script_path = os.path.join(args.output, 'train_script.py') |
|
copyfile(__file__, train_script_path) |
|
with open(train_script_path, 'a') as fOut: |
|
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv)) |
|
|
|
|
|
|
|
|
|
with open(args.data_config) as fIn: |
|
data_config = json.load(fIn) |
|
|
|
queue = mp.Queue(maxsize=100*args.nprocs) |
|
|
|
filepaths = [] |
|
dataset_indices = [] |
|
for idx, data in enumerate(data_config): |
|
filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name'])) |
|
dataset_indices.extend([idx]*data['weight']) |
|
|
|
|
|
p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices)) |
|
p.start() |
|
|
|
|
|
print("Start processes:", args.nprocs) |
|
xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork') |
|
print("Training done") |
|
print("It might be that not all processes exit automatically. In that case you must manually kill this process.") |
|
print("With 'pkill python' you can kill all remaining python processes") |
|
p.kill() |
|
exit() |
|
|
|
|
|
|
|
|
|
|