File size: 24,099 Bytes
337a4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
    FromSingleFileMixin,
    IPAdapterMixin,
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models import (
    AutoencoderKL,
    ControlNetModel,
    ImageProjection,
    UNet2DConditionModel,
)
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import (
    StableDiffusionXLPipelineOutput,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils.torch_utils import (
    is_compiled_module,
    is_torch_version,
    randn_tensor,
)
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)


def retrieve_timesteps(

    scheduler,

    num_inference_steps: Optional[int] = None,

    device: Optional[Union[str, torch.device]] = None,

    **kwargs,

):
    scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
    timesteps = scheduler.timesteps

    return timesteps, num_inference_steps


class StableDiffusionXLRecolorPipeline(
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    StableDiffusionXLLoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
):
    # leave controlnet out on purpose because it iterates with unet
    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
        "feature_extractor",
        "image_encoder",
    ]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "add_text_embeds",
        "add_time_ids",
        "negative_pooled_prompt_embeds",
        "negative_add_time_ids",
    ]

    def __init__(

        self,

        vae: AutoencoderKL,

        text_encoder: CLIPTextModel,

        text_encoder_2: CLIPTextModelWithProjection,

        tokenizer: CLIPTokenizer,

        tokenizer_2: CLIPTokenizer,

        unet: UNet2DConditionModel,

        controlnet: Union[

            ControlNetModel,

            List[ControlNetModel],

            Tuple[ControlNetModel],

            MultiControlNetModel,

        ],

        scheduler: KarrasDiffusionSchedulers,

        force_zeros_for_empty_prompt: bool = True,

        add_watermarker: Optional[bool] = None,

        feature_extractor: CLIPImageProcessor = None,

        image_encoder: CLIPVisionModelWithProjection = None,

    ):
        super().__init__()

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
        )
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor,
            do_convert_rgb=True,
            do_normalize=False,
        )
        self.register_to_config(
            force_zeros_for_empty_prompt=force_zeros_for_empty_prompt
        )

    def encode_prompt(

        self,

        prompt: str,

        negative_prompt: Optional[str] = None,

        device: Optional[torch.device] = None,

        do_classifier_free_guidance: bool = True,

    ):
        device = device or self._execution_device
        prompt = [prompt] if isinstance(prompt, str) else prompt

        if prompt is not None:
            batch_size = len(prompt)

        # Define tokenizers and text encoders
        tokenizers = (
            [self.tokenizer, self.tokenizer_2]
            if self.tokenizer is not None
            else [self.tokenizer_2]
        )
        text_encoders = (
            [self.text_encoder, self.text_encoder_2]
            if self.text_encoder is not None
            else [self.text_encoder_2]
        )

        prompt_2 = prompt

        # textual inversion: process multi-vector tokens if necessary
        prompt_embeds_list = []
        prompts = [prompt, prompt_2]
        for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )

            text_input_ids = text_inputs.input_ids

            prompt_embeds = text_encoder(
                text_input_ids.to(device), output_hidden_states=True
            )

            # We are only ALWAYS interested in the pooled output of the final text encoder
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds.hidden_states[-2]
            prompt_embeds_list.append(prompt_embeds)

        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        negative_prompt_embeds = None
        negative_pooled_prompt_embeds = None

        if do_classifier_free_guidance:
            negative_prompt = negative_prompt or ""

            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)

            # normalize str to list
            negative_prompt = [negative_prompt]
            negative_prompt_2 = negative_prompt

            uncond_tokens: List[str]
            uncond_tokens = [negative_prompt, negative_prompt_2]

            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(
                uncond_tokens, tokenizers, text_encoders
            ):
                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(
                dtype=self.text_encoder_2.dtype, device=device
            )

            negative_prompt_embeds = negative_prompt_embeds.view(
                batch_size, seq_len, -1
            )

        pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)

        if do_classifier_free_guidance:
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.view(
                bs_embed, -1
            )

        return (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
    def encode_image(

        self, image, device, num_images_per_prompt, output_hidden_states=None

    ):
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(
                image, output_hidden_states=True
            ).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = (
                uncond_image_enc_hidden_states.repeat_interleave(
                    num_images_per_prompt, dim=0
                )
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    def prepare_ip_adapter_image_embeds(

        self,

        ip_adapter_image,

        device,

        do_classifier_free_guidance,

    ):
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []

        if not isinstance(ip_adapter_image, list):
            ip_adapter_image = [ip_adapter_image]

        if len(ip_adapter_image) != len(
            self.unet.encoder_hid_proj.image_projection_layers
        ):
            raise ValueError(
                f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
            )

        for single_ip_adapter_image, image_proj_layer in zip(
            ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
        ):
            output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
            single_image_embeds, single_negative_image_embeds = self.encode_image(
                single_ip_adapter_image, device, 1, output_hidden_state
            )

            image_embeds.append(single_image_embeds[None, :])
            if do_classifier_free_guidance:
                negative_image_embeds.append(single_negative_image_embeds[None, :])

        ip_adapter_image_embeds = []

        for i, single_image_embeds in enumerate(image_embeds):
            if do_classifier_free_guidance:
                single_image_embeds = torch.cat(
                    [negative_image_embeds[i], single_image_embeds], dim=0
                )

            single_image_embeds = single_image_embeds.to(device=device)
            ip_adapter_image_embeds.append(single_image_embeds)

        return ip_adapter_image_embeds

    def prepare_image(self, image, device, dtype, do_classifier_free_guidance=False):
        image = self.control_image_processor.preprocess(image).to(dtype=torch.float32)

        image_batch_size = image.shape[0]

        image = image.repeat_interleave(image_batch_size, dim=0)
        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance:
            image = torch.cat([image] * 2)

        return image

    def prepare_latents(

        self, batch_size, num_channels_latents, height, width, dtype, device

    ):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )

        latents = randn_tensor(shape, device=device, dtype=dtype)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def denoising_end(self):
        return self._denoising_end

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @torch.no_grad()
    def __call__(

        self,

        image: PipelineImageInput = None,

        num_inference_steps: int = 8,

        guidance_scale: float = 2.0,

        prompt_embeds: Optional[torch.Tensor] = None,

        negative_prompt_embeds: Optional[torch.Tensor] = None,

        pooled_prompt_embeds: Optional[torch.Tensor] = None,

        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,

        ip_adapter_image: Optional[PipelineImageInput] = None,

        controlnet_conditioning_scale: Union[float, List[float]] = 1.0,

        control_guidance_start: Union[float, List[float]] = 0.0,

        control_guidance_end: Union[float, List[float]] = 1.0,

        **kwargs,

    ):
        controlnet = self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(
            control_guidance_end, list
        ):
            control_guidance_start = len(control_guidance_end) * [
                control_guidance_start
            ]
        elif not isinstance(control_guidance_end, list) and isinstance(
            control_guidance_start, list
        ):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(
            control_guidance_end, list
        ):
            mult = (
                len(controlnet.nets)
                if isinstance(controlnet, MultiControlNetModel)
                else 1
            )
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )

        self._guidance_scale = guidance_scale

        # 2. Define call parameters
        batch_size = 1
        device = self._execution_device

        if isinstance(controlnet, MultiControlNetModel) and isinstance(
            controlnet_conditioning_scale, float
        ):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(
                controlnet.nets
            )

        # 3.2 Encode ip_adapter_image
        if ip_adapter_image is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                device,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            image = self.prepare_image(
                image=image,
                device=device,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=self.do_classifier_free_guidance,
            )
            height, width = image.shape[-2:]
        elif isinstance(controlnet, MultiControlNetModel):
            images = []

            for image_ in image:
                image_ = self.prepare_image(
                    image=image_,
                    device=device,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
                )

                images.append(image_)

            image = images
            height, width = image[0].shape[-2:]
        else:
            assert False

        # 5. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device
        )
        self._num_timesteps = len(timesteps)

        # 6. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
        )

        # 7.1 Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(
                keeps[0] if isinstance(controlnet, ControlNetModel) else keeps
            )

        # 7.2 Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds

        add_time_ids = negative_add_time_ids = torch.tensor(
            image[0].shape[-2:] + torch.Size([0, 0]) + image[0].shape[-2:]
        ).unsqueeze(0)

        negative_add_time_ids = add_time_ids

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat(
                [negative_pooled_prompt_embeds, add_text_embeds], dim=0
            )
            add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device)

        added_cond_kwargs = {
            "text_embeds": add_text_embeds,
            "time_ids": add_time_ids,
        }

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = (
                    torch.cat([latents] * 2)
                    if self.do_classifier_free_guidance
                    else latents
                )
                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t
                )

                # controlnet(s) inference
                control_model_input = latent_model_input
                controlnet_prompt_embeds = prompt_embeds
                controlnet_added_cond_kwargs = added_cond_kwargs

                if isinstance(controlnet_keep[i], list):
                    cond_scale = [
                        c * s
                        for c, s in zip(
                            controlnet_conditioning_scale, controlnet_keep[i]
                        )
                    ]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=image,
                    conditioning_scale=cond_scale,
                    guess_mode=False,
                    added_cond_kwargs=controlnet_added_cond_kwargs,
                    return_dict=False,
                )

                if ip_adapter_image is not None:
                    added_cond_kwargs["image_embeds"] = image_embeds

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=None,
                    cross_attention_kwargs={},
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, return_dict=False
                )[0]

                if i == 2:
                    prompt_embeds = prompt_embeds[-1:]
                    add_text_embeds = add_text_embeds[-1:]
                    add_time_ids = add_time_ids[-1:]

                    added_cond_kwargs = {
                        "text_embeds": add_text_embeds,
                        "time_ids": add_time_ids,
                    }

                    controlnet_prompt_embeds = prompt_embeds
                    controlnet_added_cond_kwargs = added_cond_kwargs

                    image = [single_image[-1:] for single_image in image]
                    self._guidance_scale = 0.0

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()

        latents = latents / self.vae.config.scaling_factor
        image = self.vae.decode(latents, return_dict=False)[0]
        image = self.image_processor.postprocess(image)[0]

        # Offload all models
        self.maybe_free_model_hooks()

        return StableDiffusionXLPipelineOutput(images=image)