File size: 1,865 Bytes
e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 26f31da 2311dd1 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 e21a21b 1be7701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
library_name: transformers
tags:
- moe
- moah
- mod
license: apache-2.0
datasets:
- Locutusque/UltraTextbooks
language:
- en
---
# Model Card for Model ID
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
MoM: Mixture of Mixture
This Model is a test to combine [Jamba](https://huggingface.co./ai21labs/Jamba-v0.1) architecture with 1.58 bits linear layers **excpted for attention layer**, mixture of attention head and mixture of depth.
The goal is to developpe and test if this kind of architectures have not too much quality loss for a fast inference.
Only 17.8M parameter over 1025 is in bf16 precision wich is ~ 1.7% of the total number of parameters
- **Model type:** Mixture of attention head mixture of depth and mixture of expert 1.58bit linear layers **excepted for attention layer**
- **License:** Apache licence 2.0
### Model Sources [optional]
- **Repository:** https://github.com/ostix360/optimized-LLM
## How to Get Started with the Model
If you want to test this model please look at this repo at this [commit](https://github.com/ostix360/optimized-LLM/tree/04cae61fb252a5927756c86ec0efde32d0dd3794)
## Training Details
- **wandb**: [training detail](https://wandb.ai/ostix360/Mixture%20of%20mixture%20(mod,%20moah%20moe)/runs/68hieuwt)
### Training Data
We use the first 100k data of Locutusque/UltraTextbooks to train this model
### Training Procedure
We use adam-8 bits with default betas and epsilon values
#### Preprocessing [optional]
The data fit the model max length i.e. 512 tokens
#### Training Hyperparameters
Please look at the wandb metadata file or the train.py file in the repo to see the hyperparameters
## Technical Specifications [optional]
### Compute Infrastructure
#### Hardware
- one 4070 ti GPU
#### Software
- pytorch, transformers etc
|