File size: 4,143 Bytes
ec25a6e 1240f58 ec25a6e 70b712a 1240f58 ec25a6e 1240f58 04bf1ce 1240f58 ec25a6e 1240f58 ec25a6e 1240f58 ec25a6e 1240f58 ec25a6e 1240f58 ec25a6e 1240f58 0d8b104 1240f58 ec25a6e 1240f58 ec25a6e 1240f58 ec25a6e 1240f58 04bf1ce 27622fa 04bf1ce 27622fa 04bf1ce dd082d7 04bf1ce dd082d7 04bf1ce ec25a6e dd082d7 04bf1ce ec25a6e 04bf1ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: apache-2.0
language:
- tr
---
<img src="https://huggingface.co./Orbina/Orbita-v0.1/resolve/main/orbita.png"
alt="Orbita LLM" width="500"/>
# Orbita-v0.1
This model is a Turkish Large Language Model with multiple abilites across different dimensions on the Turkish Language covering a variety of Tasks like Coding,Math,...
This model is an extended version of a Qwen-based Large Language Model (LLM) for Turkish. It was trained on a cleaned Turkish dataset carefully annotated to carry out turkish instructions in an accurate and organized manner. This model was fully finetuned extensively on 8 H100 GPU's for 2 days using a carefully annotated Turkish dataset.
## Model Details
- **Base Model**: Qwen 14B based LLM
- **Training Dataset**: Annotated Turkish Dataset
- **Training Method**: Full Finetuning
## Usage Examples
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"Orbina/Orbita-v0.1",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-14B-Chat")
prompt = "türkiyenin inflasyonu nasıl çözebiliriz?"
messages = [
{"role": "system", "content": "Sen Orbina ai tarafından üretelen bir yapay zekasındır, soruları uygun bir şekilde cevap veriyorsun"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Example Generations
```
Prompt:
Türkiyedeki 1990-2000 arasındaki olaylar özetli bir şekilde saydır
Cevap:
Türkiye, zengin tarihi ve doğal güzellikleriyle dünya çapında ünlüdür. İşte Türkiye'de gezebileceğiniz beş popüler yer:
1. **Ege Bölgesi**: Ege Bölgesi, İzmir ve Ege şehirlerini içerir ve turkuaz suları, güzel plajları ve antik tapınaklarıyla ünlüdür.
2. **Anadolu Yarımadası**: Anadolu Yarımadası'nda bulunan Cappadocia bölgesi, volkanik dağlar ve etkileyici manzaralarıyla dikkat çeker. Göreme Kalesi gibi tarihi yapılar bu bölgede bulunur.
3. **İzmit**: İzmit bölgesindeki Sakız Adası (Sakız Adası), özellikle yaz aylarında popüler bir tatil beldesidir çünkü güzel plajları ve sıcak iklimi ile bilinir.
4. **Bodrum**: Bodrum şehri, eski bir liman şehri olup tarihi anıtlarıyla ünlüdür. Mağara müzelerine sahip olan bu şehir aynı zamanda Bodrum Sarayı'na ev sahipliği yapmaktadır.
5. **Antalya**: Antalya kentindeki Alanya kasabası veya Kaşmir bölgesindeki Kemer kasabası gibi yerlerde tatil yapabilirsiniz; burada güzel plajlara ulaşabilirsiniz veya doğayla iç içe olabilirsiniz.
Bu örneklerden yola çıkarak Türkiye'nin birçok farklı bölgeyi keşfetmek mümkündür; her bir bölge kendine has özelliklere sahip olup ziyaretçilerine unutulmaz deneyimler sunmaktadır
```
```
Prompt:
bana bir python hesap makinese kod yaz
Cevap:
Python'da basit bir hesap makinesi oluşturmak için aşağıdaki örnek kodu kullanabilirsiniz.
Bu kod, kullanıcıdan iki sayı ve bir işlem alır ve sonucu ekrana yazdırır.
``python
Python'da "Hello, World!" yazmak için aşağıdaki basit kodu kullanabilirsiniz:
``python
print("Hello, World!")
```
Bu kodu bir Python dosyasına yapıştırarak ve ardından bu dosyayı çalıştırarak ekrana "Hello, World!" yazısını görebilirsiniz. Örneğin, `hello_world.py` adında bir dosya oluşturup içine bu kodu kopyalayıp kaydettikten sonra komut satırında (terminalde) şu komutu kullanarak çalıştırabilirsiniz:
``bash
python hello_world.py
```
Eğer Python yüklü değilse veya farklı bir Python sürümü kullanıyorsanız (örneğin Python 2), uygun olan komutları kullanmalısınız.
```
|