--- license: apache-2.0 license_link: https://choosealicense.com/licenses/apache-2.0/ base_model: - EleutherAI/pythia-1b base_model_relation: quantized --- # pythia-1b-int4-ov * Model creator: [Eleutherai](https://huggingface.co./EleutherAI) * Original model: [pythia-1b](https://huggingface.co./EleutherAI/pythia-1b) ## Description This is [pythia-1b](https://huggingface.co./EleutherAI/pythia-1b) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **int4_asym** * ratio: **1.0** * group_size: **128** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2024.2.0 and higher * Optimum Intel 1.19.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co./docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co./docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "OpenVINO/pythia-1b-int4-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("What is OpenVINO?", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install openvino-genai huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "OpenVINO/pythia-1b-int4-ov" model_path = "pythia-1b-int4-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) print(pipe.generate("What is OpenVINO?", max_length=200)) ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) ## Limitations Check the original model card for [limitations](). ## Legal information The original model is distributed under [apache-2.0](https://choosealicense.com/licenses/apache-2.0/) license. More details can be found in [original model card](https://huggingface.co./EleutherAI/pythia-1b). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.