--- license: mit license_link: https://huggingface.co./microsoft/Phi-3.5-vision-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: image-text-to-text tags: - nlp - code - vision base_model: - microsoft/Phi-3.5-vision-instruct base_model_relation: quantized --- # Phi-3.5-vision-instruct-int8-ov * Model creator: [Microsoft](https://huggingface.co./microsoft) * Original model: [Phi-3.5-vision-instruct](https://huggingface.co./microsoft/Phi-3.5-vision-instruct) ## Description This is [microsoft/Phi-3.5-vision-instruct](https://huggingface.co./microsoft/Phi-3.5-vision-instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT8_ASYM** ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2025.0.0 and higher * Optimum Intel 1.21.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co./docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co./docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino_tokenizers openvino pip install git+https://github.com/huggingface/optimum-intel.git ``` 2. Run model inference ``` from PIL import Image import requests from optimum.intel.openvino import OVModelForVisualCausalLM from transformers import AutoProcessor, TextStreamer model_id = "OpenVINO/Phi-3.5-vision-instruct-int8-ov" processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) ov_model = OVModelForVisualCausalLM.from_pretrained(model_id, trust_remote_code=True) prompt = "<|image_1|>\nWhat is unusual on this picture?" url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11" image = Image.open(requests.get(url, stream=True).raw) inputs = ov_model.preprocess_inputs(text=prompt, image=image, processor=processor) generation_args = { "max_new_tokens": 50, "temperature": 0.0, "do_sample": False, "streamer": TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True) } generate_ids = ov_model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args ) generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ``` ## Limitations Check the original [model card](https://huggingface.co./microsoft/Phi-3.5-vision-instruct) for limitations. ## Legal information The original model is distributed under [MIT](https://huggingface.co./microsoft/Phi-3.5-vision-instruct/blob/main/LICENSE) license. More details can be found in [original model card](https://huggingface.co./microsoft/Phi-3.5-vision-instruct).